

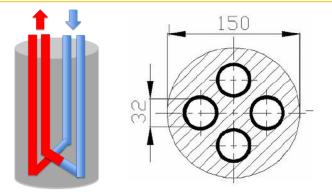
La ricerca ENEA sulle sonde geotermiche - Aggiornamenti sull'impianto pilota della Casaccia

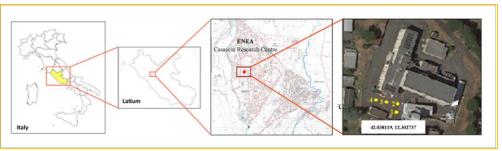
Roma, 29 maggio 2025

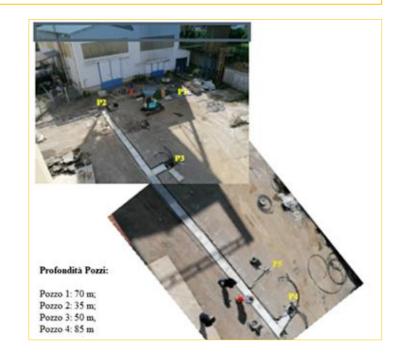
A.C. Violante (ENEA), R. Trinchieri (ENEA), L. Colacino (Sapienza Università di Roma),

CAMPO GEOSONDE: primo **IMPIANTO PILOTA**, di proprietà Enea, che sfrutta la

«Geotermia a bassa entalpia»


 $20^{\circ}\text{C} < \Delta T < 90^{\circ}\text{ C}$


Progetto 1.7.: «Tecnologie per la penetrazione efficiente del vettore elettrico negli usi finali», nell'ambito della Ricerca di Sistema Elettrico


CIRCUITO CHIUSO di sonde geotermiche ad andamento **verticale**, configurazione "**double U**".

USI DIRETTI: produzione e stoccaggio di energia termica rinnovabile

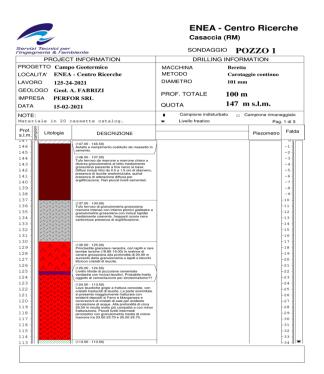
Sensori in fibra ottica DTS (Distributed Temperatures Sensor)

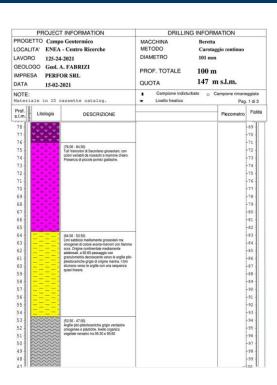
MISURAZIONI TERMOMETRICHE:

lungo la verticale di ogni pozzo, ogni 2 metri

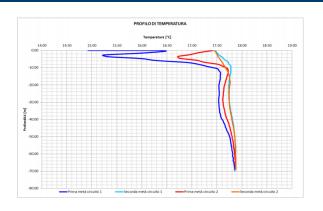
Sondaggio geognostico

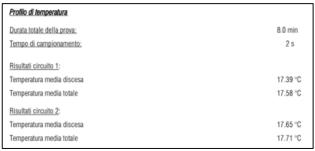
(Successione vulcanica sabatina)





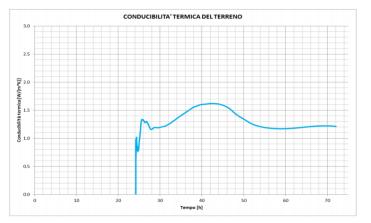
Sondaggio geognostico (Pozzo 1, Profondità 100 m dal p.c.)



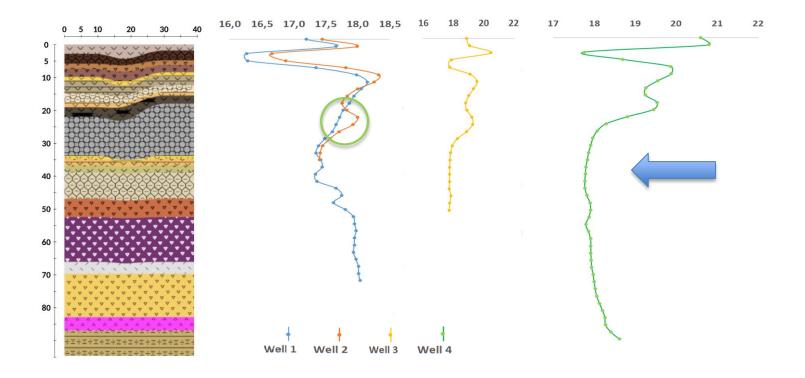

	PROJEC	T INFORMATION	DRILLING INFORMATION						
PROGETTO Campo Geotermico			MACC	HINA	Beretta				
LOCALITA' ENEA - Centro Ricerche			METC	DO	Carotag	gio continuo			
LAVOR	0 125-24	1-2021	DIAME	DIAMETRO 101 mr			n		
GEOLO	OGO Geol.	A. FABRIZI							
IMPRE	SA PERF	OR SRL	PROF	. TOTALE	100 m	l			
DATA	15-02-	0110100	QUOT	ГА	147 n	ı s.l.m.			
NOTE:	13-02-	2021		Campione indistu	rhato = C	ampione rimane	aggiato		
	ale in 20	cassette catalog.		Livello freatico			, 1 di 3		
Prof. s.l.m.	Litologia	DESCRIZIONE				Piezometro	Falda		
107 1		Pozzolane di colore marrone scuro molto	-			_	"0		
112		grossolane a fini con lapili e piccoli liveli di 0.5-1 cm litoidi nerastri.					-35 -		
111 -			1				-36 -		
110	1111111	(110.50 - 104.00) Tufi granulari da grigio a verdastri					-37 -		
109 -	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	argilificati					-38 -		
108	55555						-39 -		
107							-40 -		
106							-41		
105							-42		
103	^^^^	(104.00 - 95.20)	1				-44		
102	^^^^^	Tufi rossastri ricchi di minerali femici e lapilli					-45		
101	^ ^ ^ ^						-46		
100	^^^^						-47 -		
99	^^^^						-48		
98	^^^^						-49		
97	^^^^^						-50 -		
96-	^^^^						-51 -		
95	X X X X	(95.20 - 92.00)	1				-52 -		
94		Tufi di colore marrone scuro con lapilli e scorie presenza di bombe vulcaniche.					-53 -		
93		presentation control resources.					-54 -		
92	4.4.4.4.4	(92.00 - 76.00)	1				-55 -		
91	~~~~~°	Tulo rosso a scorie Nere					-56 -		
90 -	2-2-2-2						-57 -		
89-	~~~~~~					1	-58 -		
88 -	~~~~~~					1 1	-59		
86	2-2-2-5						-61		
85	4,4,4,4,4						-62		
84	424242						-63		
83-	2020						-64		
82	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						-65 -		
81-	<u>^</u>						-66 -		
80-	44444						-67 -		
79		ll .					-68		

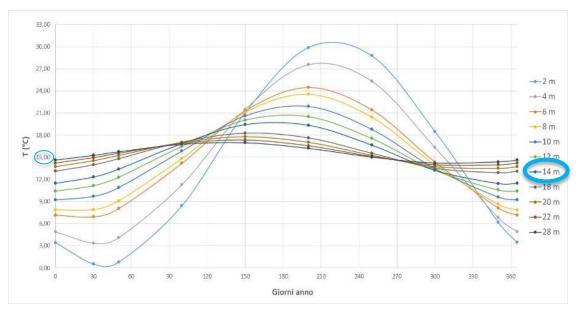


Ground Response Test (GRT)



$$T_m = 17,67 \, ^{\circ}C$$


$$\lambda_m = 1,21 \frac{W}{mK}$$


Correlazione termico – stratigrafica

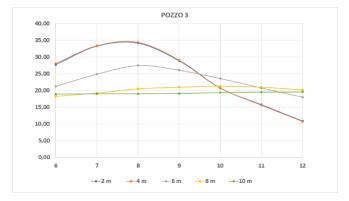
Temperatura del terreno (Tg) calcolata

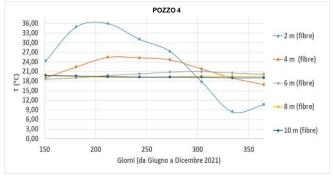
$$\theta_{\rm g}({\rm d,t}) = \theta_{\rm M} - A_{\theta \rm s} * {\rm Exp} \left[-{\rm d} * \left(\frac{\pi}{T*\alpha} \right)^{1/2} \right] \cos \left[\frac{2\pi}{T} \left({\rm t-T_0} - \frac{d}{2} \left(\frac{T}{\pi*\alpha} \right)^{1/2} \right) \right]$$

Temperatura media annuale	15,60
Ampiezza oscillazione A _{8s}	18,81
Giorno più freddo dell'anno 2021	14-feb
Giorno più caldo dell'anno 2021	12-ago

$$\alpha = \left[\frac{\lambda}{Cv}\right] = \text{diffusività (0,04 m}^2/\text{giorno)}$$

$$C_v = 2.6 * 10^6 \, MJ/m^3 K$$

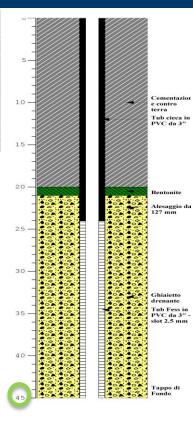

$$\lambda_m = 1,21 \frac{W}{mK}$$



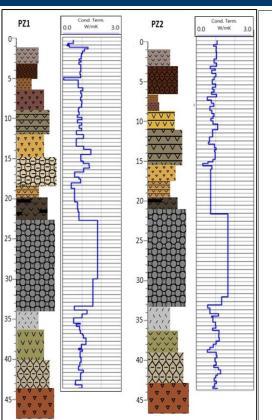
Temperatura del terreno misurata nei quattro pozzi dalle fibre ottiche

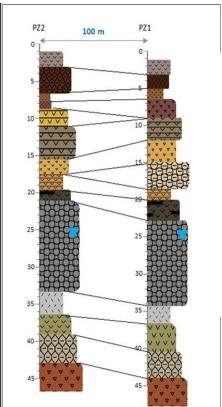
(Giugno - Dicembre 2021)

Realizzazione Piezometri – Sondaggi Geognostici (fino a 45 m dal p.c.) Sensore di livello e di temperatura (Datalogger SIM STRUMENTI - modello LV615-RL)

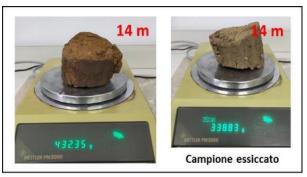

Piezometro	Coordinata E (m)	Coordinata N (m)	Quota topografica (m s.l.m.)	Quota piezometrica (m s.l.m.)	Soggiacenza (m)
PZ1	276733	4657621	≈ 147	≈ 121,70	25,30
PZ2	276744	4657526	≈ 148	≈ 121,79	26,21

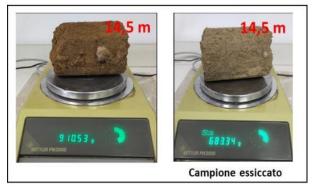
Gradiente idraulico: 9 mm ogni 100 m




- Misure in situ della conducibilità termica sui campioni dei sondaggi PZ1 e PZ2 Misuratore portatile ad ago *Transient Line Source* TLS-100 (Thermtest)

- Correlazione litostratigrafica PZ1-PZ2





Misure di laboratorio sui campioni del sondaggio geognostico S1 Misure in situ – PZ1 – PZ2

SOPRA - FALDA

SOTTO - FALDA

- Misura dell'altezza del provino;
- Diametro noto = 8 cm
- Misura della massa del provino;
- Volume calcolato

CALORE SPECIFICO $\left[\frac{c_v}{\rho}\right]$

$$C_p = J/kg * K$$

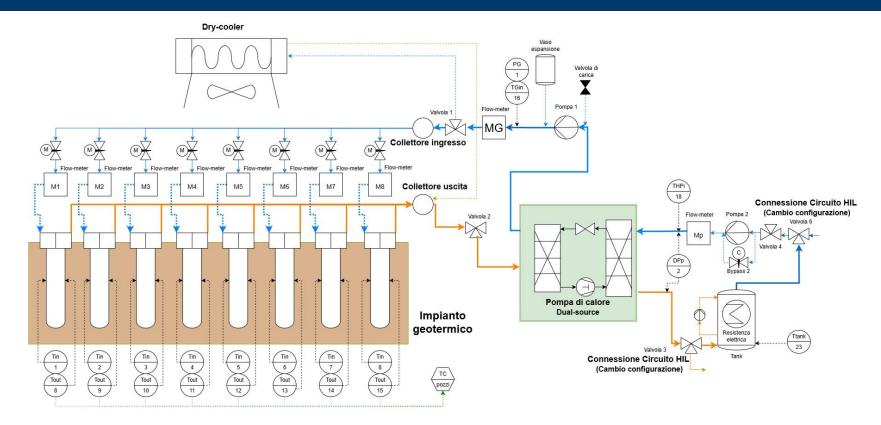
Capacità termica volumica

$$C_v = 2.2 * 10^6 J/m^3 K$$
 Rocce magmatiche fratturate e non

 $V = \pi r^2 h$

m

$$C_v = 2.5 * 10^6 J/m^3 K$$
 Lave

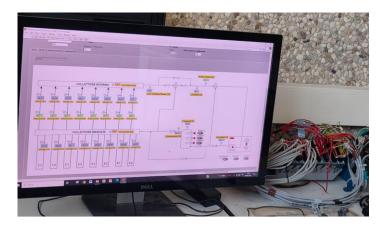


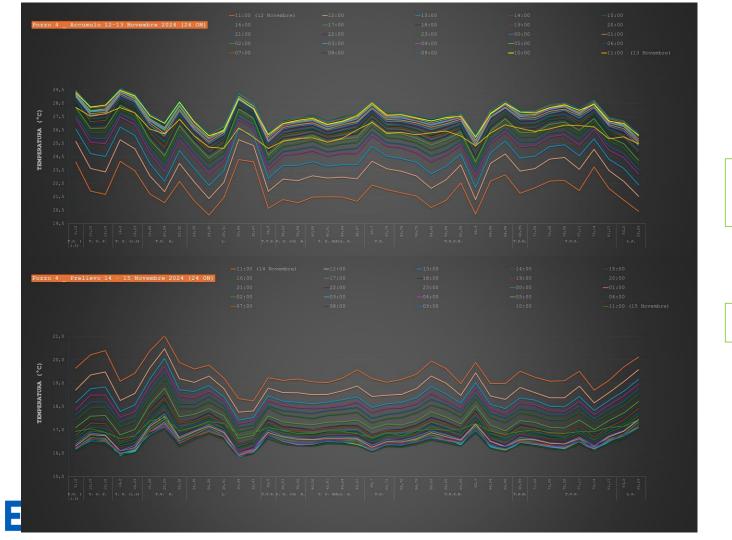
Risultati (ρ , C_p)

	Media	Media						Media	Media
	densità (kg/m³)	cp (J/Kg*K)				L		densità (kg/m³)	cp (J/Kg*K)
Ignimbrite	1979	1113	٦	ו ר	ſ	Tufo a granulometria variabile fino alla sabbia grossolana, con matrice anche argillosa e presenza di litici eterometrici (bombette)	2256	985	
Tufo marrone scuro a granulometria fine con	1934	1140	2689	931					
argillificazione	1934	1140			PZ2	1	Tufo terroso sabbioso marrone, che passa a pozzolana a matrice sabbiosa grigio scura	2206	1003
Tufo sabbioso con presenza di inclusi litici	1776	1242	П				Pozzolana sabbiosa di colore marroncino-	2155	1025
Tufo marrone chiaro a granulometria fine con	1845	1200	П		- PZ		verdastra con aumento della componente argillosa	2155	1025
argillificazione				PZ2	ည်		Tufo da marrone a ocra, a matrice sabbiosa, scarsi inclusi e debolmente argillificato. Alla	1807	1224
Tufo sabbioso molto chiaro	1742	1263		PZ1 -			base granulometria più fine		
Tufo marrone sabbioso con inclusi scoriacei grigio scuri. Assenza di litici	1854		ſ	-	Tufi a componente sabbiosa di colore marrone rossastro. Inclusi eterogenei, a granulometria variabile	1808	1223		
Piroclastite	2145	1027	П	<u>ه</u> –	S =	┨╏	Tufo rosso a scorie nere	1597	1378
Tufo sabbioso argillificato	1864	1180	П				Tufo sabbioso argilloso	1600	1375
Tufo sabbioso argillificato marrone scuro	2501	880	J				Tufo avana chiaro con pomici grigio scure -		-
			1				Tufi di Sacrofano	1664	1322
					Ļ		Limi sabbiosi	1767	1245

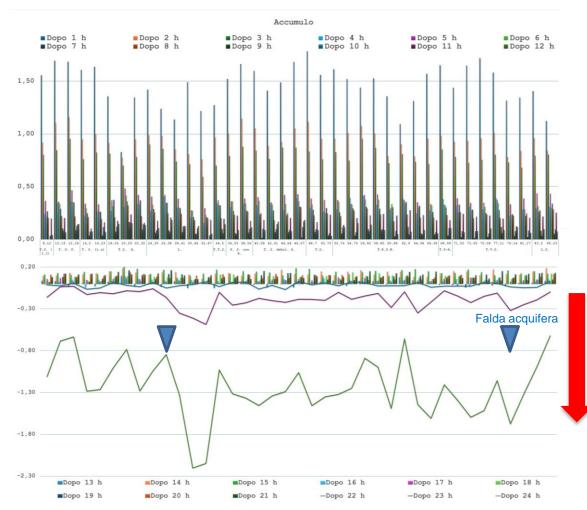


Schema di impianto GEOTERMICO





Test monitoraggio campo termico



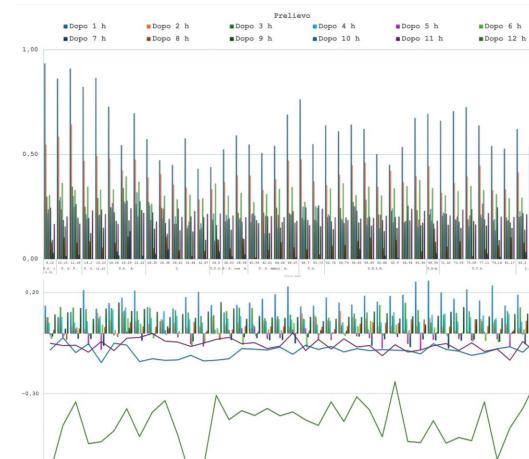
Analizzare la <u>risposta</u> <u>termica</u> del sottosuolo in diverse configurazioni operative

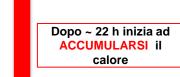
Esclusi i primi 8 m dal p.c.

POZZO 4 Prova di accumulo 12/13 Novembre 2024 (24 ON)

Aumento di T nei terreni ad alta conducibilità termica:

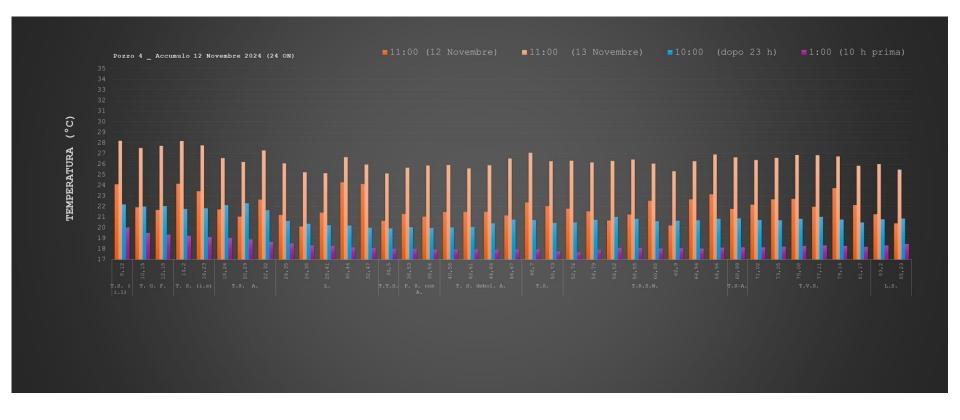
- tufi sabbiosi con inclusioni di litici e scorie, lave, tufo sabbioso, alcuni intervalli dei tufi rossi a scorie nere e parte dei tufi varicolori di Sacrofano.

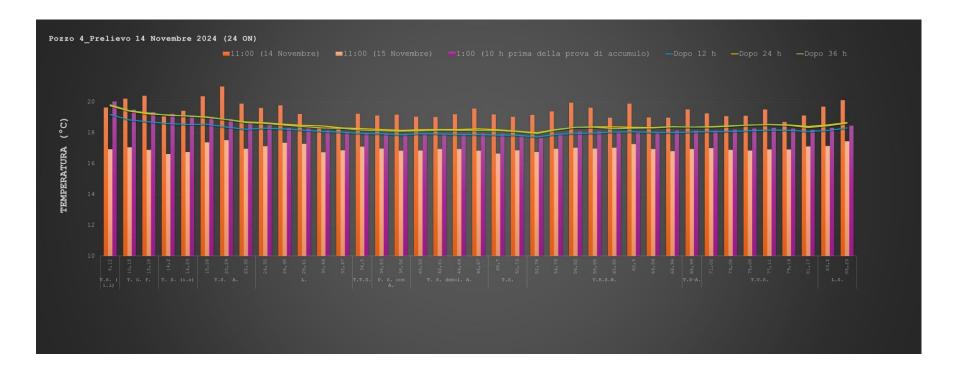

si riscaldano rapidamente se sottoposti a sollecitazioni termiche, ma rilasciano altrettanto rapidamente il calore accumulato


Terreni a maggiore inerzia termica:

 tufo sabbioso argillificato, tufi terrosi sabbiosi e limi sabbiosi

Dopo ~ 22 h inizia a
CEDERE
il calore




-0,80

POZZO 4 Prova di prelievo

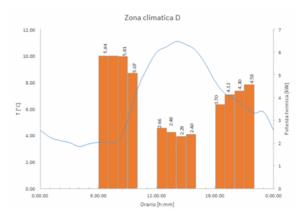
14/15 Novembre 2024 (24 ON)

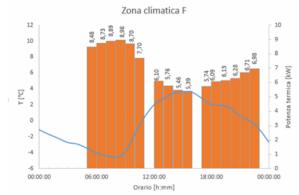
Outline

L'impianto sperimentale

Definizione Carichi termici utenze di riferimento

Esecuzione test dinamici

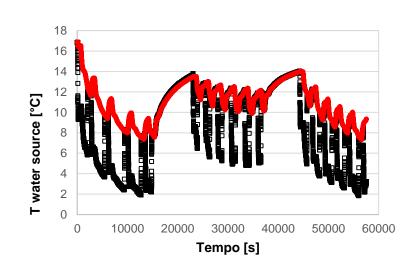



Outline

L'impianto sperimentale

Definizione Carichi termici utenze di riferimento

Esecuzione test dinamici

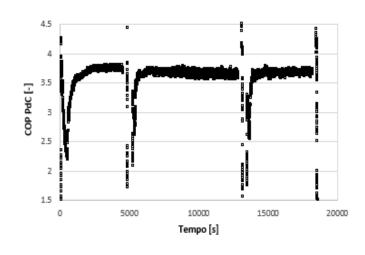


Outline

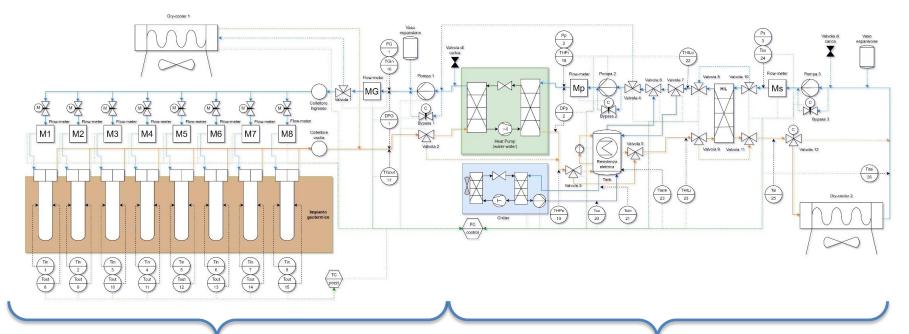
L'impianto sperimentale

Definizione Carichi termici utenze di riferimento

Esecuzione test dinamici



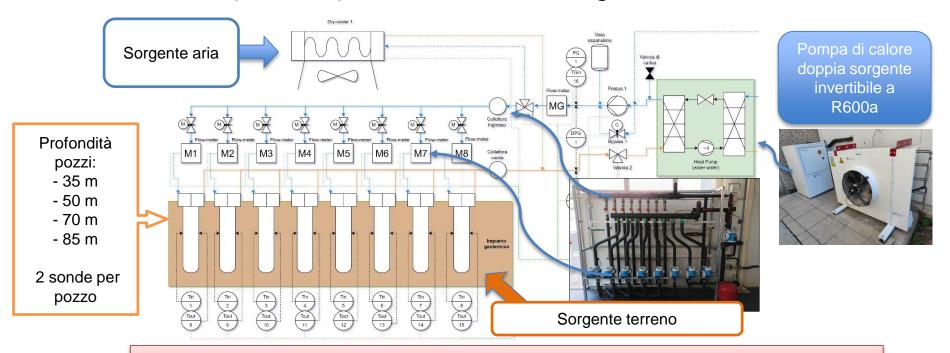
Outline


L'impianto sperimentale

Definizione Carichi termici utenze di riferimento

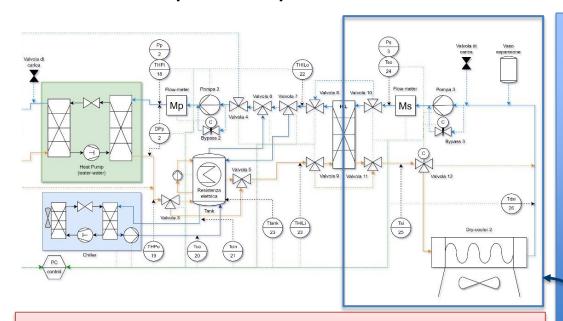
Esecuzione test dinamici

L'impianto sperimentale



Sezione sorgenti termiche

Sezione simulazione utenza


L'impianto sperimentale – le sorgenti termiche

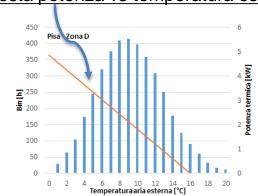
Acquisizione di portate e temperature per il calcolo della potenza termica estratta dalla sorgente

L'impianto sperimentale - Sezione simulazione utenza

Misure di portate, temperature e potenze elettriche per il calcolo della potenza termica prodotta e di COP/EER

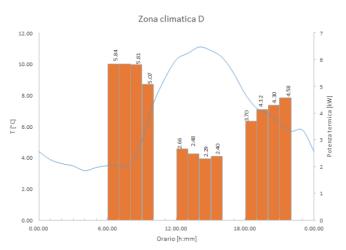
Questa sezione consente l'esecuzione di test in riscaldamento e raffrescamento (11 possibili configurazioni):

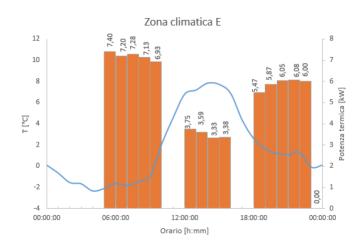
- <u>stazionari</u>: le condizioni di temperatura e portata in ingresso PdC sono mantenute stabili durante tutta la durata del test, tramite accumulo inerziale asservito a chiller e resistenze elettriche


<u>dinamici</u>: viene impiegata la <u>sezione</u>
<u>di simulazione utenza</u> per riprodurre
fabbisogni energetici di utenze tipo,
preventivamente stimati

Definizione Carichi termici utenze di riferimento

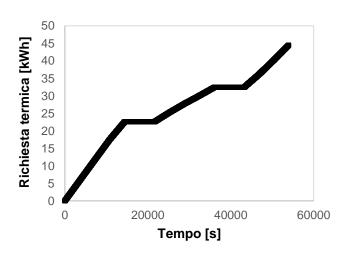
- Approccio statistico: dalla distribuzione degli edifici residenziali per zona climatica, epoca e tipologia costruttiva è stato determinato il Fabbisogno termico stagionale di riferimento E_{st} per ogni zona climatica
- Individuazione di 5 località rappresentative di ciascuna zona climatica e relativi bin, sulla base dei loro gradi-giorno in rapporto a quello medio della zona (pesato con la popolazione ivi residente)
- Ipotesi di firma energetica lineare dell'edificio → <u>individuazione richiesta potenza vs temperatura esterna</u>

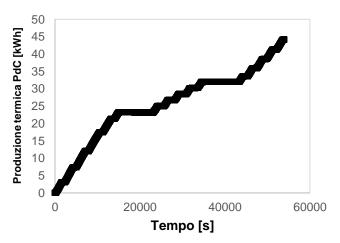

Zona climatica	Località	Gradi- giorno	T di progetto	E _{st} [kWh/m²]
В	Palermo	751	5 °C	17,8
С	Bari	1185	0 °C	41,8
D	Pisa	1694	0 °C	81,5
E	Milano	2404	-5 °C	145,4
F	Belluno	3001	-10 °C	224,2



Definizione Carichi termici utenze di riferimento

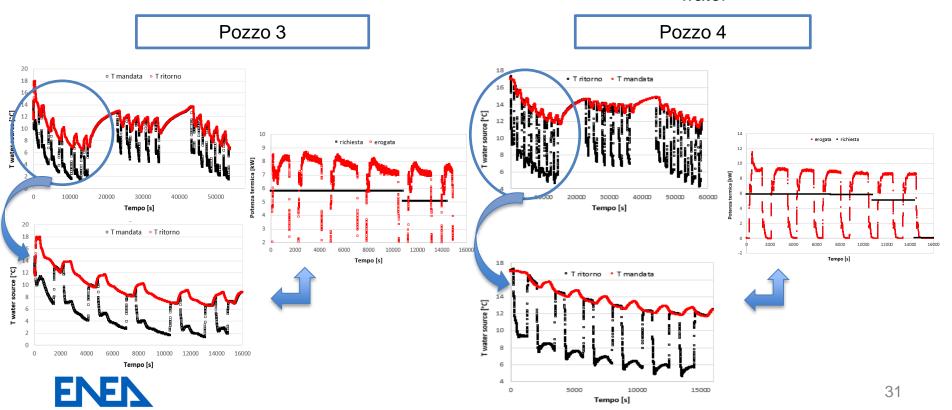
- Dal profilo di temperatura orario giornaliero → profilo di potenza
- In base alle ore massime di accensione degli impianti di riscaldamento per zona climatica e assumendo i periodi di accensione → Individuazione della richiesta di potenza oraria



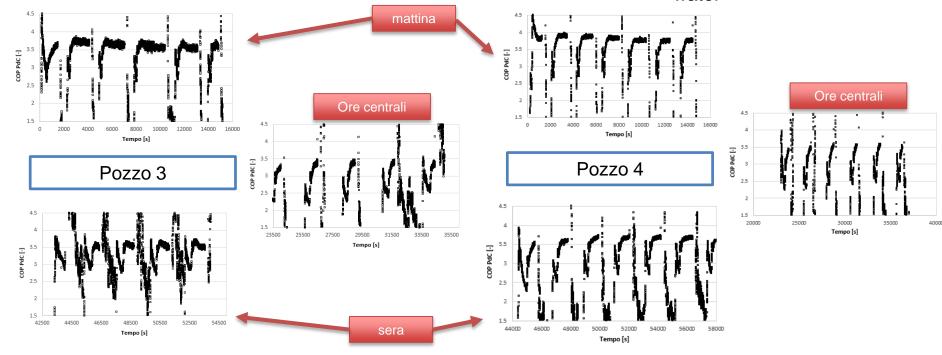


Esecuzione test dinamici giornalieri

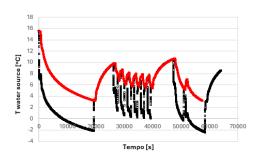
Parametri di prova: temperatura out PdC; T_{user} ingresso e uscita (terminali impianto), portata acqua lato sorgente Configurazione: profilo utenza (zona climatica), scelta pozzo, ΔE_{set}

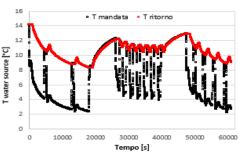


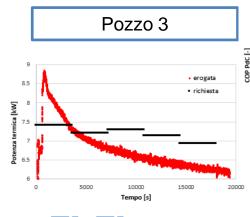
Dalla richiesta di potenza oraria → Fabbisogno energetico


Erogazione energia PdC intermittente

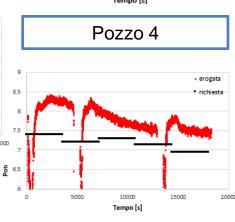
Risultati test dinamici – zona climatica D – T_{water} 30-35 °C


Risultati test dinamici – zona climatica D – T_{water} 30-35 °C

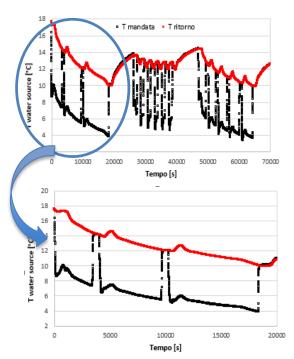


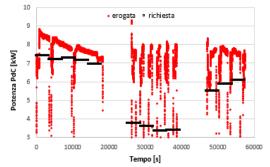

Periodo di accensione	mattino	Ore centrali	Sera	Totale*	
ECOP pozzo 3 [kWhth/kWhel]	3,49	2,82	3.31	3,27	
ECOP pozzo 4 [kWhth/kWhel]	3,64	2,80	3,29	3,33	32

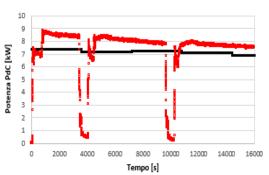
Risultati test dinamici – zona climatica E – T_{water} 30-35 °C

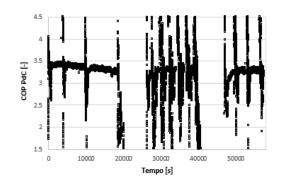


Periodo di accensione	mattino	Ore centrali	Sera	Totale*
ECOP pozzo 3 [kWhth/kWhel]	3,44	3,08	3,12	3,26
ECOP pozzo 4 [kWhth/kWhel]	3,60	3,19	3,40	3,45








33

Risultati test dinamici – zona climatica E – T_{water} 40-45 °C

Periodo di accensione	mattino	Ore centrali	Sera	Totale*
ECOP [kWhth/kWhel]	3,31	3,04	3,13	3,19

Pozzo 4

Osservazioni su risultati sperimentazione e sviluppi

- Esecuzione test con configurazioni di prova diverse (es. con portate diverse lato sorgente)
- Verificare la riproducibilità dei risultati
- Verifica delle prestazioni con test eseguiti in giorni consecutivi, a parità di condizioni di prova
- Impiego di pompa di calore differente (es. con inverter e diverso refrigerante)

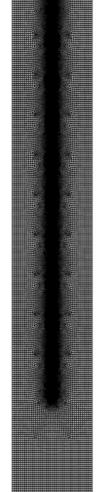
L'interpretazione dei risultati deve tener conto della particolare configurazione dell'impianto sperimentale (caratteristiche campo geotermico, tipologia pompa di calore, ecc.)

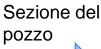
Attenzione alla generalizzazione dei risultati

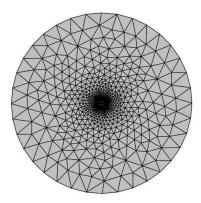
Necessità dell'attività di modellazione a supporto dell'indagine sperimentale

Modellazione di Borehole Heat Exchangers

- ➤ Utilizzo accoppiato con GSHP e/o come sistema di <u>accumulo termico</u> con logiche integrate di <u>Demand-Side Management</u>.
- Quali sono i parametri fisici che influenzano maggiormente la produttività della risorsa?
- Quali sono i vantaggi nell'applicazione di BHE come sistemi di accumulo termico di breve termine?
- Che ruolo possono avere per aumentare la flessibilità dei sistemi?

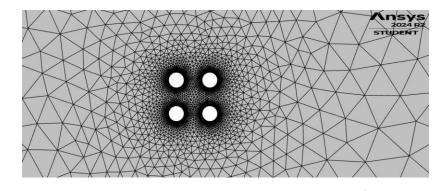

Modellazione numerica del BHE

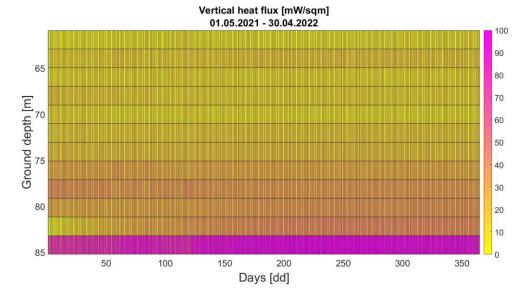

- Analisi transitori di lunga durata.
- ☐ Criterio di progettazione attuale (formulazione compatta):


$$L = \frac{Q_{\mathcal{Y}} \cdot R_{\mathcal{Y}} + Q_m \cdot R_m + Q_h \cdot (R_h + R_b)}{T_a - T_f - T_p}$$

Lunghezza della sonda – metodo ASHRAE

Parametri da correlare: <u>Lunghezza</u> della sonda (L), <u>Carico termico</u>
 (Q), <u>Conducibilità del terreno</u> (λ), <u>Gestione delle operazioni</u> (h), <u>Portata della falda acquifera</u> (ṁ).



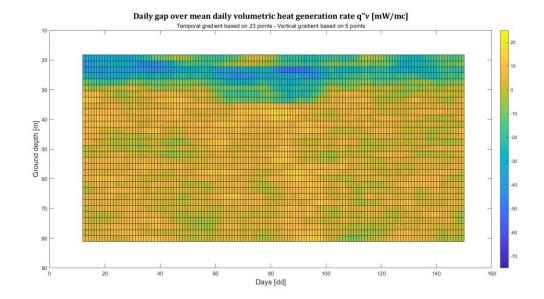


Valutazione flusso geotermico profondo – sito Casaccia

- ☐ La temperatura basale del sito non è costante.
- ☐ Flusso di calore basale a quota 85 m intorno a 100 mW/ m².
- I gradienti orizzontali sono trascurabili rispetto al gradiente verticale.

$$\vec{q} = -\lambda \vec{V} T \left[\frac{W}{m^2} \right]$$

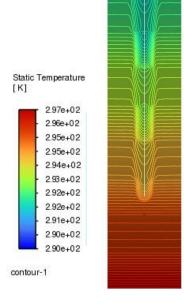
Legge di Fourier


$$q''_{z} = -\lambda_{(\Delta z)} \frac{\left(T_{z} - T_{(z + \Delta z)}\right)}{\Delta z} \left[\frac{W}{m^{2}}\right]$$

Flusso termico in direzione verticale

Influenza della falda acquifera – sito Casaccia

- La generazione interna volumetrica di calore rappresenta l'asporto di calore da parte della falda acquifera.
- ☐ La falda acquifera introduce una perdita in fase di accumulo termico.
- L'influenza principale, a campo inattivo, avviene tra 20m e 30m.


$$\frac{\partial^2 T}{\partial z^2} + \frac{q''_{VOL}}{\lambda} = \frac{1}{\alpha} \frac{\partial T}{\partial \tau} \left[\frac{^{\circ}K}{m^2} \right]$$

Equazione del campo conduttivo in regime transitorio

Influenza della stratigrafia sulla temperatura del BHE

- ☐ Simulazione numerica con varie stratigrafie.
- ☐ Distribuzione della stratigrafia influenza:
- I. Profilo di temperatura sulla superficie del BHE.
- II. Flusso termico scambiato con ogni strato litologico.
- ☐ Gli strati contribuiscono differentemente allo scambio termico.

Simulazione di 30 combinazioni di differenti di stratigrafie di terreno per 5 lunghezze differenti di pozzi: 20 m, 40 m, 60 m, 80 m, 100 m.

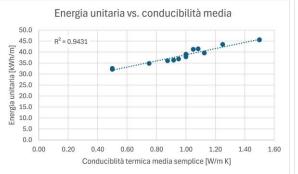
$$T = T(5 m) - 4 \cdot (1.0714 - 0.0357 \cdot T_e) e^{-z/L}$$

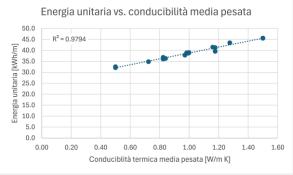
Profilo di temperatura sulla superficie del BHE tramite profilo di carico Eurovent

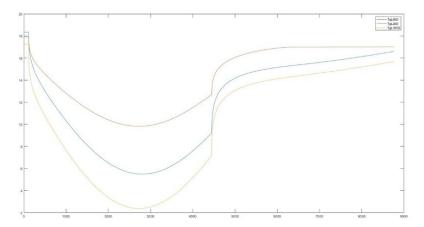
$$q''_z = 100 \left[\frac{mW}{m^2} \right]$$

Flusso geotermico basale medio a 125 m

$$T_{amb} = 17 + 17\sin(\pi \frac{t+tf}{\tau})$$


Profilo di temperatura ambiente secondo norma UNI 10349

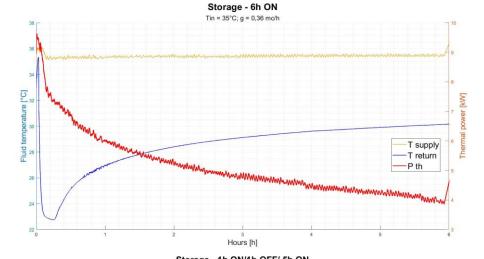


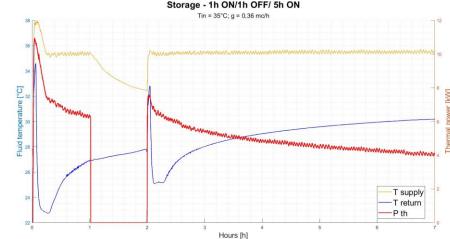


Influenza della conducibilità termica sull'energia scambiata

- ☐ La conducibilità media pesata fornisce un risultato più accurato.
- ☐ Il valore medio di conducibilità restituisce un risultato affidabile.
- Il profilo di temperatura dell'acqua nelle tubazioni come viene influenzato dalle differenti stratigrafie?

Evoluzione della temperatura media del terreno nel tempo per effetto di una sollecitazione stagionale

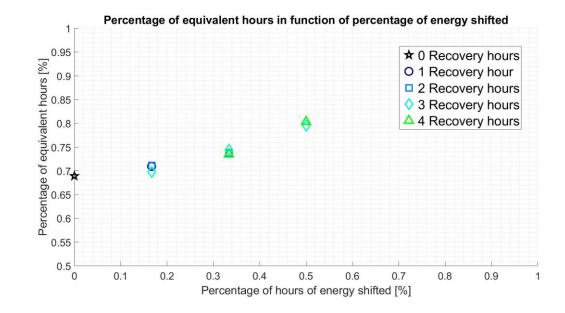



Prove sperimentali di accumulo termico – sito Casaccia

- ☐ Temperatura di immissione costante.
- ☐ L'energia scambiata <u>non</u> è costante nel tempo.
- □ Applicazione di logiche di Demand-Side Management.

$$P_{th} = g c_P (T_{IN}(t_1) - T_{OUT}(t_1 + \Delta t)) [W]$$

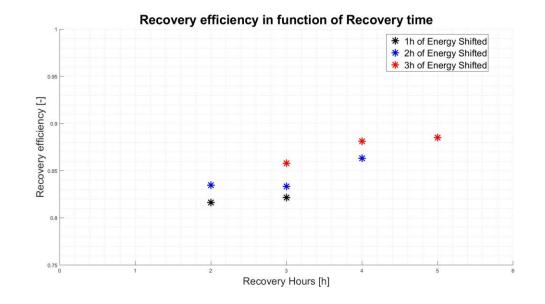
Potenza termica scambiata con la risorsa



Effetto della quantità di ore anticipate sull'energia scambiata

- Parametri di Demand-Side Management: tempo di recupero e quantità di ore anticipate.
- □ La percentuale di ore equivalenti alla prima ora di funzionamento incrementa fino al 50% di ore anticipate.
- □ Tra il 50% e il 100% le ore equivalenti della risorsa diminuiscono e tendono al valore di 0%.

Test sperimentali realizzati ad oggi fino al 50% di ore anticipate.


$$h_{eq} = \frac{\frac{1}{3.6 \times 10^6} \sum_{1}^{n} P_{th,i}}{E_{1st-hour}}$$
 [%]

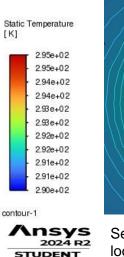
Percentuale di ore equivalenti

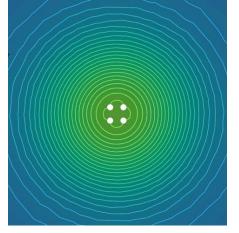
Efficienza di recupero termico del terreno dopo le interruzioni

- L'aumento della durata dell'interruzione delle operazioni incrementa la potenza termica scambiata con la risorsa.
- ☐ L'efficienza di recupero cresce dal 80% al 90%.
- Q L'incremento maggiore avviene tra 3 e 4 ore di recupero.

$$\eta_{h1-recovery} = \frac{E_{1st-hour\ Post-recovery}}{E_{1st-hour}} [-]$$

Efficienza di recupero termico dopo l'interruzione delle operazioni




Effetto del Demand-Side Management sulla sollecitazione termica

- □ La differente gestione delle operazioni dell'impianto modifica la penetrazione della sollecitazione termica nel terreno.
- Analisi delle pulsazioni termiche per determinare la condizione di regime stazionario.

Modellazione numerica delle prove di accumulo termico eseguite con logiche di Demand-Side Management.

Sezione del BHE con logicho di Domand Sido

Sezione del BHE senza logiche di Demand-Side Management

Sezione del BHE con logiche di Demand-Side Management

$$t = \frac{5 r_{\rm b}^2}{\alpha} [s]$$

Tempo caratteristico del Borehole (Claesson e Eskilson)

Prospettive di ricerca

Applicazione dei BHEs e del Demand-Side Management a reti di teleriscaldamento per aumentarne l'inerzia termica e la flessibilità.

Integrazione della sorgente geotermica con quella solare per la valutazione dell'accumulo termico stagionale.

Proposta di integrazione di correlazioni matematiche per il metodo di dimensionamento attuale delle GSHPs.

annacarmela.violante@enea.it raniero.trinchieri@enea.it leonardo.colacino@uniroma1.it

