INYENTARIODELLERISORSE GEOTERMICHENAZIONALI

ENEL S.P.A.DPT/VDAG
ENI-AGIP SERG
CNR /IPG
ENEA AMB / ANV

VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE

RAPPORTO a cura di:
Geotermica Italiana s.r.l.
con incarico ENEA - Roma del 29/07/1992

$$
\text { Giugno } 1993
$$

ENEA - Ente per le Nuove tecnologie, l'Energia e l'Ambiente, Roma
" Disciplina della ricerca e della coltivazione delle risorse geotermiche"

INVENTARIO DELLE RISORSE GEOTERMICHE NAZIONALI
ENEL S.p.A.DPT / VDAG
ENI-AGIP SERG CNR $H R G$ ENEA AMB / ANV

VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE

RAPPORTO a cura di:
Geotermica Italiana s.r.I.
con incarico ENEA - Roma del 29/07/1 192

Giugno 1993

ENEA - Ente per le Nuove tecnologie, l'Energia e l'Ambiente, Roma

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
INDICE
INTRODUZIONE

1. DEFINIZIONE DI POTENZIALE GEOTERMICO
2. METODI DI VALUTAZIONE DEL POTENZIALE GEOTERMICO
2.1. METODO DEL FLUSSO DI CALORE
2.1.1. Stato dell'arte
2.1.2. Considerazioni critiche
2.2. METODO DEL VOLUME
2.2.1. Stato dell'arte
2.2.2. Considerazioni critiche
2.3. METODO DELLA FRATTURA PLANARE
2.3.1. Stato dell'arte
2.3.2. Considerazioni critiche
2.4. METODO DEL BILANCIO DEL CALORE MAGMATICO
2.4.1. Stato dell'arte
2.4.2. Considerazioni critiche
2.5. STRATEGIA METODOLOGICA ADOTTATA
2.5.1. Revisione del metodo del volume
2.5.2. \quad Calibrazione del metodo del volume
3. RISERVE GEOTERMICHE ITALIANE
3.1. TOSCANA
3.2. LAZIO
3.2.1. Torre Alfina
3.2.2. Latera
3.2.3. Bolsena
3.2.4. Viterbo
3.2.5. Vico
3.2.6. Capránica
3.2.7. Monterosi
3.2.8. Manziana
3.2.9. Grottaferrata e Colli Albani ovest
3.2.10. Cesano
3.3. CAMPANA
3.3.1. Suio
3.3.2. Campi Flegrei
3.3.3. P Pompei
3.3.4. Ischia
3.4. BASILICATA
4. RICOSTRUZIONE DEL MODELLO GEOCHIMICOGEOTERMICO CONCETTUALE E VALUTAZIONE DEL POTENZIALE GEOTERMICO DI AREE SELEZIONATE
4.1. LIPARI
4.1.1. Vulcanologia e vulcano-tettonica
4.1.2. Geochimica dei fluidi
4.1.2.1. Classificazione chimica delle acque
4.1.2.2. Distribuzione delle specie mobili
4.1.2.3. Geotermometria idrogeochimica
4.1.2.4. Distribuzione della $\mathrm{P}_{\mathrm{CO} 2}$, ammonio e temperatura
4.1.2.5. Geochimica dei gas
4.1.2.6. Modello geochimico-geotermico concettuale
4.1.3. Valutazione delle riserve geotermiche
4.2. VUlCANO
4.2.1. Attività geotermiche effettuate a Vulcano
4.2.2. Vulcanologia
4.2.3. Geochimica dei fluidi
4.2.3.1. Classificazione chimica delle acque
4.2.3.2. Distribuzione delle specie mobili
4.2.3.3. Distribuzione della PCO2 e della temperatura
4.2.3.4. Sintesi idrogeochimica
4.2.3.5. Geochimica dei gas fumarolici
4.2.3.6. Modello geochimico-geotermico concettuale
4.2.4. Valutazione delle riserve geotermiche
4.3. PANTELLERIA
4.3.1. Attività geotermiche effettuate a Pantelleria
4.3.2 \quad Vulcanologia
4.3.3. Gravimetria
4.3.4 \quad Geochimica dei fluidi
4.3.4.1. Classificazione chimica delle acque
4.3.4.2. Distribuzione delle specie mobili
4.3.4.3 Geotermometria idrogeochimica
4.3.4.4. Distribuzione della $\mathrm{P}_{\mathrm{CO} 2}$ e della temperatura
4.3.4.5. \quad Geochimica dei gas fumarolici
4.3.4.6. Modello geochimico-geotermico concettuale
4.3.5. Valutazione delle riserve geotermiche
4.4. GRABEN SARDO-CAMPIDANESE
4.4.1. Cenni geologico-strutturali
4.4.2 \quad Stato termico
4.4.3 \quad Circolazione dei fluidi termali
4.4.4. Distribuzione della $\mathrm{P}_{\mathrm{CO} 2}$ nelle acque del Campidano
5. APPLICAZIONE DEL MODELLO DI RAFFREDDAMENTO CONDUTTIVO DI CAMERE MAGMATICHE.
5.1 Generalità
5.2. Lipari
5.3. Campi Flegrei
5.4. Vesuvio
5.5. Osservazioni conclusive
6. CONCLUSIONI
6.1. Aggiomamento delle metodologie di valutazione delle risorse
6.2. Applicazioni
6.3. Risultati

Bibliografia
ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
APPENDICE 1. ANALISI ECONOMICA RELATIVA ALLA GENERAZIONE GEOTERMOELETTRICA DIRETTA.
A1.1. Introduzione
A1.2. Ipotesi di base per la valutazione del costo totale della generazione geotermoelettrica diretta
A1.3. Valutazione dei costi
A1.3.1. \quad Costi di investimento per i casi base
A1.3.2. \quad Costi operativi e di manutenzione
A1.3.3. Costi finanziari
A1.3.4 \quad Tempi
A1.4. Costo della generazione geotermoelettrica diretta: casi base e analisi di sensibilità
APPENDICE 2. ANALISI ECONOMICA DI UN PROGETTO DI GENERAZIONE GEOTERMOELETTRICA MEDIANTE CICLO BINARIO.
A2.1. Introduzione
A2.2. I potesi di base per la valutazione del costo totale della generazione geotermoelettrica mediante ciclo binario
A2.3. Valutazione dei costi
A2.3.1. \quad Costi di investimento per i casi base
A2.3.2. Costi operativi e di manutenzione
A2.3.3. Costi finanziari
A2.3.4. Tempi
A2.4. Costo della generazione geotermoelettrica mediante ciclo binario: caso base e analisi di sensibilità
APPENDICE 3. VALUTAZIONE DEL FLUSSO TERMICO CONVETTIVO NATURALE PER SORGENTI E POZZI TERMALI.
ANNESSO: Marini L. e Chiodini G. (1993). Il ruolo della anidride carbonica nei sistemi geotermici carbonatico-evaporitici tosco-laziali. Acta Volcanologica (in corso di stampa).

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

INTRODUZIONE

Il presente rapporto illustra i risultati conseguiti nell'ambito dell'incarico ENEA del 29/7/1992, relativamente alle voce a: rappresentazione dei modelli geoidrologici e termici delle aree di potenziale interesse geotermico ed aggiornamento delle metodologie di valutazione delle risorse. Questo lavoro aveva il duplice obbiettivo di:
(1) rivisitare criticamente i metodi di valutazione del potenziale geotermico, scegliere quello o quelli più idonei ed eventualmente migliorarli;
(2) applicare tale o tali metodi al contesto italiano, al fine di valutare il potenziale geotermico sia delle aree dove esistono perforazioni e dati di produzione, sia delle aree dove esistono dati di sottosuolo e perforazioni (ma prive di dati di produzione), sia delle aree di interesse dove mancano i dati di sottosuolo.
E^{\prime} stato possibile soddisfare pienamente il primo obbiettivo, tramite una revisione e calibrazione del metodo del volume, che lo hanno trasformato da metodo di utilita regionale in strumento di dettaglio, la cui buona affidabilità è stato possibile verificare in alcuni casi.
Il secondo obbiettivo è stato raggiunto in tutte le aree che avevano i requisiti di dati di superficie necessari per la applicabilità del metodo. Per le altre zone sarebbe auspicabile la produzione dei dati, essenzialmente di geochimica delle acque di circolazione poco profonda, necessari per una estensione della valutazione a tutto il territorio nazionale.

Il lavoro è stato eseguito dal dott. Luigi Marini (responsabile) con la collaborazione dei dott. Fabrizio Franceschini, Marcello Ghigliotti, Massimo Guidi e Andrea Merla della Geotermica Italiana. Si desidera ringraziare, per il proficuo scambio di opinioni a livello metodologico e/o applicativo:

- Mauro Brondi dell'ENEA-AMB-MON-GEOTER di S.Maria di Galeria (Roma)
- ing. Giovanni Allegrini, dott. Plinio Baldi, dott. Armando Ceccarelli, ing. Guido Cappetti, dott. Gian Carlo Stefani dell'ENEL-VDAG di Pisa;
- dott. Raffaele Cataldi dell'ENEL-International di Pisa;
- dott. Enrico Barbier, dott. Costanzo Panichi e dott. Paolo Squarci dell'Istituto Internazionale per le Ricerche Geotermiche del CNR di Pisa;
- dott. Roberto Cioni, dott. Claudia Principe e dott. Brunella Raco dell'Istituto di Geocronologia e Geochimica Isotopica del CNR di Pisa;
- prof. Franco Barberi e dott. Alessandro Sbrana del Dipartimento di Scienze della Terra dell'Universita di Pisa;
- prof. Raffaele Caboi del Dipartimento di Scienze della Terra dell'Università di Cagliari;
- dott. Giovanni Chiodini del Dipartimento di Scienze della Terra dell'Università di Perugia;
- ing. Riccardo Corsi della STEAM srl di Pisa;

Geotermica Italiana

5

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

- dott. Roberto Chierici e dott. Raffaello Nannini del CESEN SpA di Genova.
Si ringrazia inoltre l'ENEL-VDAG e l'Ente Minerario Siciliano per aver messo a disposizione dati non pubblicati.

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

In questo lavoro per potenziale geotermico di una certa area si intende l'insieme delle riserve geotermiche, nell'accezione di Muffler e Cataldi (1978). In altri termini, si considera il calore che, alla luce dei vincoli tecnologici, legali ed economici attuali, è estraibile dal sottosuolo dell'area in esame, per mezzo di pozzi perforati ad una profondita stabilita, e sfruttabile sia per generazione diretta di energia elettrica sia per altri usi, a costi competitivi con quelli di altre fonti energetiche. Conformemente alla legge n. 896 del 9 dicembre 1986, questo calore viene valutato rispetto alla temperatura di $25^{\circ} \mathrm{C}$.

Seguendo la nomenclatura proposta da Muffler e Cataldi (1978), con il termine risorsa geotermica si definiscono i fluidi geotermici utili ed accessibili (sia identificati che non), mentre per riserva geotermica si intende quella parte della risorsa che è identificata (mediante perforazioni e/o in base ad evidenze geologiche, geochimiche e geofisiche) ed estraibile a costi competitivi con quelli di altre fonti energetiche (Fig. 1.1). Le risorse geotermiche possono essere a loro volta suddivise in:

- risorse subeconomiche; questi fluidi, pur non essendo estraibili a costi competitivi oggi, lo potrebbero diventare in futuro;
- risorse residuali; questi fluidi non sono estraibili a costi competitivi nè oggi nè probabilmente in futuro.

Sono considerate riserve geotermiche per generazione diretta di energia elettrica i fluidi localizzati a profondità inferiori a $3 \mathrm{~km} e$ di temperatura $\geq 200{ }^{\circ}{ }^{\circ} \mathrm{C}$, corrispondente ad una pressione di saturazione di 15.5 bar. Questi limiti relativi alla profondita e alla temperatura dei serbatoi geotermici da includere nelle riserve di questo tipo sono il risultato della analisi economica riportata in Appendice 1. I risultati ottenuti mediante questa analisi economica appaiono ragionevoli se si considera che le profondita mediamente raggiunte dalle perforazioni geotermiche eseguite, per finalita produttive, nel periodo 1 gennaio 1985 - 1 gennaio 1990 sono: 2533 m a Iarderello, 2948 a Travale, 3230 m a Piancastagnaio, 2449 m a Latera (Cataldi et al., 1990). Bisogna anche ricordare che il grado di conoscenza del sottosuolo è generaimente scarso oltre la soglia dei 3 km di profondita.

I fluidi geotermici con temperatura compresa fra poco più di $100^{\circ} \mathrm{C}$ e $200^{\circ} \mathrm{C}$ sono suscettibili di utilizzo (usi diretti, produzione di energia elettrica mediante ciclo binario) in genere economicamente vantaggioso, semprechè non siano localizzati a profondita troppo elevate. Per valutare questi limiti di profondità è stata eseguita l'analisi economica di un progetto di generazione elettrica mediante ciclo binario (vedi Appendice 2). I risultati di tale analisi suggeriscono che $i 1500 \mathrm{~m}$ sotto il piano campagna rappresentano il limite delle riserve geotermiche economicamente estraibili per temperature comprese fra poco più di $100{ }^{\circ} \mathrm{C}$ e $200{ }^{\circ} \mathrm{C}$. Ovviamente i pozzi già esistenti, anche di notevole profondita, che hanno incontrato fluidi

Geotermica Italiana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
con temperature nell'intervallo $100-200{ }^{\circ} \mathrm{C}$, sono da includere fra le riserve geotermiche di questo tipo.

I fluidi geotermici con temperatura inferiore ai $100^{\circ} \mathrm{C}$ e convenzionalmente maggiore di $30{ }^{\circ} \mathrm{C}$ sono economicamente sfruttabili mediante utilizzo diretto solamente se sono localizzati a moderata profondita. In caso contrario, le spese di perforazione rendono luso di questi fluidi economicamente non competitivo con altre fonti energetiche. Le profondita di $1600-1850 \mathrm{~m}$ raggiunte nel Bacino di Parigi, per produrre fluidi della temperatura di 47-85 ${ }^{\circ} \mathrm{C}$ (Rojas el al., 1987), sono risultate economicamente convenienti solo grazie a particolari agevolazioni finanziarie (Pivin, 1992). Poichè la profondità limite entro la quale è vantaggioso 10 sfruttamento dei fluidi di temperatura compresa fra $30{ }^{\circ} \mathrm{C}$ e $100{ }^{\circ} \mathrm{C}$ dipende da fattori estremamente variabili (temperatura del fluido, tipo di utilizzo, scala del progetto, distanza di trasporto, ...) è praticamente impossibile scegliere un utilizzo rappresentativo per valutare la profondita limite come nei casi precedenti. E' stata pertanto scelta arbitrariamente la profondita di 1000 m sotto il piano campagna come limite per le riserve geotermiche di temperatura comprese fra 30 e $100^{\circ} \mathrm{C}$.

Tenendo conto delle considerazioni precedenti, le aree di cui valutare il potenziale geotermico sono state suddivise nelle seguenti categorie:
(A) aree di interesse geotermico per generazione diretta di energia elettrica: si tratta delle aree in cui sono presenti fluidi con $T \geq 200{ }^{\circ} \mathrm{C}$ a profondita inferiori a 3 km;
(B) aree di interesse geotermico sia per generazione di energia elettrica mediante ciclo binario sia per usi diretti: si tratta delle aree in cui sono presenti fluidi caratterizzati da $100<T<200{ }^{\circ} \mathrm{C}$ a profondita inferiori a 1.5 km ;
(C) aree di interesse geotermico per i soli usi diretti: si tratta delle aree in cui sono presenti fluidi con $30 \leq$ $T \leq 100{ }^{\circ} \mathrm{C}$ a moderata profondita (< 1 km).
Un primo esame della "Classificazione geotermica del territorio nazionale" (dall'Inventario delle risorse geotermiche nazionali del Ministero deli'Industria, del Commercio e dell'Artigianato a cura di ENEL, ENI-AGIP, CNR, ENEA) mostra che le aree di cui ai punti A e B sono presenti principalmente nelle regioni Toscana, Lazio e Campania.
A queste aree sono da aggiungere:

- le Isole Eolie (in particolare Vulcano e Lipari) e Pantelleria;
- il graben del Campidano in Sardegna, anche se l'estensione della anomalia termica in questa regione è probabilmente sovrastimata.

Fig. 1.1. Diagramma di McKelvey per l'energia geotermica, indicante la distinzione fra risorse e riserve (da Muffler e Cataldi, 1978).

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

2. METODI DI GEOTERMICO

I metodi attualmente disponibili per valutare il potenziale geotermico di una zona definita sono raggruppabili nelle quattro classi seguenti:

- metodo del flusso di calore
- metodo del volume
- metodo della frattura planare
- metodo del bilancio del calore magmatico.

Nei paragrafi seguenti, per descrivere lo stato dell'arte attuale si è fatto riferimento a: Muffler (1973), Bodvarsson (1974), Nathenson e Muffler (1975), Renner et al. (1975), Smith e Shaw (1975) Muffler e Cataldi (1978), Cataldi et al. (1978), Cataldi e Squarci (1978), Cataldi e Celati (1983), wohletz e Heiken (1992).

Una considerazione critica che riguarda indiscriminatamente tutti i metodi di valutazione del potenziale geotermico è la seguente: questi metodi sono sicuramente datati, poichè sono stati proposti ed elaborati principalmente negli anni '70; più recentemente è stato espresso il bisogno di un ulteriore loro miglioramento, da parte di alcuni, e la sfiducia in questi metodi e nella possibilita di un loro miglioramento, da parte di altri.
2.1. METODO DEL FLUSSO DI CALORE
2.1.1. Stato dell'arte

Il metodo è basato sul calcolo del calore geotermico che passa nell'unita di tempo, sia per conduzione sia per convezione, attraverso un'area definita della superficie terrestre, e viene rilasciato al sistema atmosferaidrosfera.
Facendo riferimento ad un'area A, nella quale il flusso di calore conduttivo medio è Fi, il calore geotermico rilasciato per conduzione nell'unita di tempo, ossia la potenza geotermica conduttiva, è:

$$
\begin{equation*}
W_{1}=A F_{1} \tag{1}
\end{equation*}
$$

Il calore geotermico rilasciato per convezione nell'unita di tempo, ossia la potenza geotermica convettiva, viene calcolato facendo riferimento alle manifestazioni termali presenti nell'area in esame, conoscendo la portata massica (Q), il calore specifico (c) e la temperatura (T) del fluido scaricato alla superficie, in base alla relazione seguente:
$W_{2}=2 \mathrm{c}\left(T-T_{0}\right)$
(2)
dove T_{0} indica la temperatura del sistema atmosferaidrosfera. La potenza termica totale (W) è:
$W=W_{1}+W_{2}$
Nota W, la metodologia di calcolo può seguire le due strade differenti seguenti:
(a) Si può calcolare il calore totale immagazzinato nel sottosuolo (E), assumendo che tutta questo calore si dissiperebbe naturalmente alla superficie in un tempo

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

geologico fissato (τ), che normalmente viene considerato dell'ordine di almeno 10^{4} o 10^{5} anni:

$$
\begin{equation*}
E=W \tau \tag{4}
\end{equation*}
$$

Noto E si può stimare la frazione di calore recuperabile, introducendo il concetto di recuperabilita, come nel metodo del volume.
(b) Si può stimare empiricamente che la potenza geotermica estraibile industrialmente sia ηW. Il fattore η varia da 4 a più di 100 a seconda degli autori.

2.1.2. Considerazioni critiche

E' evidente che si tratta di un metodo molto approssimato; le principali incertezze sono connesse con:

- la valutazione del tempo di dissipazione naturale τ e del fattore di recupero, se si segue la strada (a),
- la stima del fattore η se si segue la strada (b).

A nostro avviso, inoltre, la valutazione della potenza geotermica convettiva puo essere raffinata, introducendo nella equazione (2):

- la temperatura di equilibrio dei gas invece della temperatura del fluido scaricato alla superficie, nel caso delle fumarole;
- la portata (Q_{G}) e la temperatura del liquido geotermico puro, valutabili in base a dati geochimici, invece della portata e della temperatura del fluido scaricato alla superficie, nel caso di sorgenti termali che scaricano liquidi geotermici miscelati con acqua fredda di circolazione superficiale.
In questo caso, peraltro molto comune, la temperatura del liquido geotermico puro puo essere valutata mediante opportune funzioni geotermometriche; la concentrazione di cloruro del liquido geotermico puro $\left(\mathrm{Cl}_{\mathrm{G}}\right)$ puo essere valutata considerando il diagramma entalpia-cloruro ed utilizzata per calcolare la frazione del liquido geotermico puro (g) mediante il seguente bilancio di massa:
$C l_{M}=C l_{G} g+C l_{F}(1-g)$
dove $C l_{M}$ e $C l_{F}$ sono le concentrazioni di cloruro dell'acqua scaricata alla superficie e dell'acqua fredda di circolazione superficiale con cui si miscela il liquido geotermico. Noto g, si ha:

$$
\begin{equation*}
Q_{G}=Q g \tag{6}
\end{equation*}
$$

2.2. METODO DEL VOLUME

2.2.1. Stato dell'arte

In primo luogo il metodo prevede il calcolo del calore immagazzinato al di sotto di una certa area, fino ad una profondita fissata, la quale è funzione di parametri sia tecnologici sia economici. Questo volume di rocce contenenti fluidi viene diviso in una serie di unita in base a Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

considerazioni idrogeologico-geotermiche e per ciascuna di esse viene stimata una temperatura media (per es. Cataldi et al, 1978, per valutare il potenziale geotermico della Toscana centro-meridionale, hanno suddiviso i primi 3 km della crosta terrestre in copertura, serbatoio e basamento). E' poi necessario definire un valore di porosita per ogni unita e calcolare separatamente le quantita di calore geotermico immagazzinato nelle rocce (Eri) e nei fluidi ($E_{w i}$), secondo le relazioni seguenti:

$$
\begin{align*}
& E_{r i}=\left(1-\phi_{i}\right) c_{r i} \rho_{r i} V_{i}\left(T_{i}-T_{0}\right) \tag{7}\\
& E_{w i}=\phi_{i} C_{w i} \rho_{w i} V_{i}\left(T_{i}-T_{0}\right) \tag{8}\\
& E_{i}=E_{r i}+E_{w i} \tag{9}
\end{align*}
$$

dove:
$V_{i}=$ volume della i-esima unità
$\phi_{i}=$ porosita della i-esima unità
$\rho_{r i}=$ densità delle rocce della i-esima unità
$\rho_{w i}=$ densità del fluido contenuto nella i-esima unità
$c_{r i}=$ calore specifico delle rocce della i-esima unita
$c_{w i}=$ calore specifico del fluido contenuto nella i-esima unita
$T_{i}=$ temperatura media della i-esima unità
$T_{0}=$ temperatura di riferimento
$E_{i}=$ calore totale immagazzinato nella i-esima unita.
Poichè solo una frazione delle riserve geotermiche può essere estratta, come constatato nei campi geotermici sfruttati industrialmente, sarebbe necessario conoscere una serie di parametri geologici e fisici per poter valutare il calore geotermico estraibile. Fra questi parametri, la porosità efficace ($\phi_{e f f, i}$) delle formazioni serbatoio riveste un'importanza fondamentale.

Tuttavia questi dati sono di norma disponibili solamente quando esiste un buon numero di dati di produzione da pozzi profondi.

In mancanza di questa informazione, molti autori hanno introdotto il fattore di recupero $\left(\mathrm{R}_{\mathrm{f}}\right)$, che è definito come il rapporto fra il calore geotermico estraibile (E_{e}) ed il calore geotermico totale immagazzinato in un dato volume di rocce e fluidi (E_{i}):
$\mathrm{R}_{\mathrm{f}}=\mathrm{E}_{\mathrm{e}} / \mathrm{E}_{\mathrm{i}}$
Alcuni autori hanno stimato il fattore di recupero in base ad assunzioni arbitrarie; altri autori hanno invece calcolato il calore geotermico estraibile basandosi su differenti modelli teoretici di estrazione, quali: il flusso d'acqua intergranulare, il flusso d'acqua planare, la vaporizzazione intergranulare da un serbatoio pieno d'acqua e la ebollizione da un serbatoio a vapore dominante. Muffler e Cataldi (1978) presentano una revisione critica esauriente di questa problematica e concludono quanto segue:

- Per i sistemi geotermici ad acqua dominante, il fattore di recupero potrebbe raggiungere il valore massimo teorico di 0.50 per un serbatoio idealmente permeabile in cui $\phi_{i}=$ $\phi_{e f f, i}=0.20 ; R_{f}$ sembra decrescere al diminuire di oeff,i,

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

seguendo una relazione lineare, fino a raggiungere il valore zero per $\phi_{e f f, i}=0$ (Fig. 8 di Muffler e Cataldi, 1978). - Per i sistemi geotermici a vapore dominante il fattore di recupero può eccedere il valore di 0.15 per un serbatoio particolarmente favorevole quale quello di LardereiloTravale; R_{f} sembra decrescere al diminuire di $\phi_{e f f, i}$, seguendo una relazione lineare, fino a raggiungere il valore zero per $\phi_{e f f, i}=0 ; R_{f}$ aumenta invece al diminuire della temperatura (Fig. 7 di Muffler e Cataldi, 1978), fino a raggiungere il vincolo imposto dalla 'pressione di abbandono' (2.5 bar per generazione di elettricita).

2.2.2. Considerazioni critiche

In linea di principio questo metodo si presta ottimamente per valutare le riserve geotermiche di una regione, mediante la introduzione del concetto degli elementi finiti: maggiore è il grado di conoscenza, maggiore è infatti il numero di unità in cui è possibile suddivere il sottosuolo della regione in esame. In pratica tuttavia, quando tale esercizio può essere svolto con un notevole dettaglio, in base ai dati di numerosi pozzi profondi, esso diventa pressochè inutile perchè è già noto quanto producono i pozzi. Viceversa quando le conoscenze sono scarse le incertezze relative ai risultati del metodo sono di diversi ordini di grandezza, tali da rendere il metodo scarsamente utile.

Le principali incertezze del metodo del volume riguardano la stima del fattore di recupero e del modo in cui esso varia con la porosità efficace, particolarmente nel caso dei sistemi geotermici ad acqua dominante, per cui tali stime sono poco più che educated guesses (Muffler e Cataldi, 1978). Pertanto, mentre la stima del calore in posto gode di un certo grado di attendibilità, che dipende largamente dal grado di conoscenza del sistema, la stima del calore estraibile è decisamente più aleatoria. Ancora più incerto è il passaggio dal calore estraibile alla potenza termica estraibile, che è stato proposto da taluni in base ad ipotesi arbitrarie difficilmente verificabili. Per esempio, Nathenson e Muffler (1975) assumono che ciascun MW-secolo elettrico possa essere prodotto come una potenza di 3.33 MWe per 30 anni.

2.3. MEtODO DELLA frattura planare

2.3.1. Stato dell'arte

Questo metodo fa riferimento ad un modello nel quale si considera una frattura planare, di larghezza infinitesima, che taglia un volume di rocce impermeabili. Il calore è trasferito dalle rocce alla frattura per conduzione, mentre lungo la frattura è il fluido che trasporta il calore. Le funzioni che permettono di calcolare sia la temperatura in

Geotermica Italiana

12

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
ogni punto della roccia in un dato istante, sia la temperatura del fluido in ogni punto della frattura in un dato istante, sono riportate in una serie di lavori di Bodvarsson (per es. Bodvarsson, 1974) che fa riferimento al classico trattato di Carslaw e Jaeger (1959).

Si considera un semispazio costituito da una roccia caratterizzata da conducibilità termica k_{r}, densità ρ_{r}, calore specifico $c_{r}, ~ e ~ d i f f u s i v i t a ̀ ~ t e r m i c a ~ a_{r}=k_{r} /\left(\rho_{r} c_{r}\right)$; tale roccia, al tempo $t=0$, ha una temperatura uniforme T_{0}. Il sistema di coordinate a cui si fa riferimento è tale per cui il piano (y, z) coincide con la superficie che limita il semispazio considerato, mentre l'asse x si estende nel solido. Si considera inoltre che nel semispazio si estende una frattura planare (di larghezza infinitesima) coincidente con il piano (x, z). Si assume che al tempo $t=0$ un flusso massico specifico q (dimensionalmente una massa/lunghezza tempo) di fluido (temperatura di ingresso $=0{ }^{\circ} \mathrm{C}$, calore speci\#ico c_{w} conducibilita termica k_{w}) sia iniettato nella frattura lungo l'asse 2 . Il flusso che ne risulta è parallelo all'asse positivo x e si considera costante nel tempo e uniforme nello spazio. Si assume che le proprieta fisiche del solido e del fluido siano indipendenti dalla temperatura. La temperatura nella roccia, per $x \geq 0, t \geq 0$, è: $T(x, y, t)=T_{0} \operatorname{erf}\left[\left(a_{w} x+|y|\right) / 2\left(a_{r} t\right)^{1 / 2}\right] \quad$ (11) dove

$$
\begin{equation*}
a_{\mathrm{w}}=2 \mathrm{k}_{\mathrm{w}} /\left(\mathrm{c}_{\mathrm{w}} \mathrm{q}\right) \tag{12}
\end{equation*}
$$

La temperatura del fluido è pertanto:
$T_{W}=T(x, 0, t)=T_{0} \operatorname{erf}\left[\left(a_{w} x\right) / 2\left(a_{r} t\right)^{1 / 2}\right]$
T e T_{w} vengono calcolati assegnando valori ragionevoli a $T_{0}, k_{r}, \rho_{r}, c_{r}, k_{w,} c_{w}, q, e f a c e n d o$ variare, di volta in volta, una delle tre variabili x, y, t. I valori della funzione errore erf (β), che varia da 0 , per $\beta=0$, a 1 , per $\beta=\infty$.

Il modello è applicabile anche al caso di più fratture parallele e equidistanti, purchè la equidistanza (d) sia sufficientemente grande da impedire interazione termica (Bodvarsson, 1974). Ciò è vero per

$$
\begin{equation*}
d / 2>3\left(a t_{0}\right)^{1 / 2} \tag{14}
\end{equation*}
$$

dove to è il periodo di produzione considerato (Nathenson, 1975).

2.3.2. Considerazioni critiche

Come rilevato da Muffler e Cataldi (1978), il metodo, in particolare la variante in cui si considerano più fratture, è stato sviluppato (principalmente da Bodvarsson) per i sistemi geotermici che risiedono entro i terreni basaltici dell'Islanda. L'applicabilità del metodo è limitata dal fatto che sia il modello di una frattura planare, sia quello di più fratture paraliele e equidistanti, non sono facilmente trasferibili ad altri contesti geologici.

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

2.4. METODO DEL BILANCIO DEL CALORE MAGMATICO

2.4.1. Stato dell'arte

Smith e Shaw (1975) hanno proposto un metodo che, in base al volume della camera magmatica e alla età del vulcanismo più giovane, calcola la quantita di energia geotermica rimanente nell'intrusione e nelle rocce circostanti, considerando che il raffreddamento sia puramente conduttivo. Il volume della camera magmatica V_{B} viene calcolato in base a varie manifestazioni di superficie del vulcanismo, alla vulcano-tettonica, a dati geofisici ed al volume dei prodotti differenziati eruttati; letà dell'intrusione è stimata in base alla età T_{y} dell'ultima eruzione. Il raffreddamento per circolazione di fluidi idrotermali e la storia termica precedente la messa in posto della massa magmatica vengono trascurati, cosi come i guadagni di magma dopo il tempo T_{y}.

Wohletz e Heiken (1992) hanno presentano un modello bidimensionale di diffusione del calore, basato sulla seconda legge di diffusione di Fick; questa viene risolta utilizzando la tecnica della differenza finita di Harbaugh e Bonham-Carter (1970). Il modello di Wohletz e Heiken (1992) include anche una approssimazione per stimare il trasporto di calore per convezione.

Il modello termico utilizzato è un modello matematico che considera la perdita di calore per conduzione da una camera magmatica in corso di raffreddamento, senza considerare fenomeni convettivi. Questa decisione dipende dal fatto che la modellizzazione del trasporto di calore per convezione è troppo influenzata da scelte arbitrarie, in mancanza di una approfondita conoscenza del sottosuolo della regione.

I parametri geologici richiesti dal modello sono: il volume, la forma, la profondita e la temperatura iniziale della camera magmatica ed il tempo di raffreddamento.

Il volume della camera magmatica V viene calcolato in base alla seguente relazione:

$$
V=V_{0} \rho_{d} / f \rho_{0}
$$

dove:

- Vo è il volume del collasso calderico;
- ρ_{d} è la densità del liquido differenziato calcolata in base al metodo di Bottinga and Weill (1970), considerando la composizione dei prodotti più differenziati;
- ρ_{\circ} è la densità del liquido primario calcolata in base al metodo di Bottinga and weill (1970), considerando la composizione della roccia più basica incontrata;
- f è il coefficiente di frazionamento, calcolato in base al contenuto di una opportuna specie incompatibile (es. $\mathrm{K}_{2} \mathrm{O}$) nella roccia considerata rappresentativa del magma primario e nei prodotti piu differenziati.

La forma della camera magmatica può essere valutata solamente se sono disponibili dati geofisici; in mancanza di

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

questa informazione si considera generalmente una forma cubica.

La profondità del tetto della camera magmatica viene valutata in base a considerazioni geobarometriche (per es. il diagramma normativo $Q z-O r-A b)$ assumendo un gradiente litostatico.

La temperatura iniziale della camera magmatica viene stimata in base alle caratteristiche composizionali del magma primario.

Il modello fornisce la distribuzione della temperatura in profondita lungo una sezione simmetrica centrata sula camera magmatica.

2.4.2. Considerazioni critiche

Gli stessi Smith e Shaw (1975) riconoscono che il bilancio del calore magmatico è stato concepito e sviluppato come una guida per la esplorazione geotermica di aree di vulcanismo recente, piuttosto che un metodo per stimare quantitativamente il potenziale geotermico di tali aree.

Anche i risultati forniti dal modello termico utilizzato, nonostante esso sia più raffinato di quello di Smith e Shaw (1975), dimostrano che nessuna delle versioni del modello di raffreddamento di una massa magmatica definita è un metodo per la stima del potenziale geotermico.

2.5. STRATEGIA METODOLOGICA ADOTTATA

Nonostante i suoi limiti, il metodo del volume è quello che meglio si presta a fornire un quadro accettabile delle riserve geotermiche, se applicato in modo ragionevole, ed è stato pertanto scelto come strumento di lavoro principale. Tuttavia si è ritenuto necessario eseguire, innanzi tutto:

- sia una revisione del metodo del volume, volta a permettere la delimitazione non dei serbatoi geotermici potenziali, ma dei serbatoi geotermici effettivi;
- sia una calibrazione del metodo del volume in base ai dati di produzione relativi a campi geotermici in sfruttamento o comunque sufficientemente conosciuti.
Nel caso delle iscle di Lipari, Vulcano, e Pantelleria e del graben del Campidano è stata riesaminata la documentazione disponibile ed è stato definito un modello geochimicogeotermico concettuale, valutando in ciascun caso la possibilita di delimitare i serbatoi geotermici effettivi, per poter applicare correttamente il metodo del volume (capitolo 4).

In alcune aree vulcaniche attive (es. Campi Flegrei, Vesuvio, Lipari) caratterizzate da messa in posto di una camera magmatica recente (<0.1 milioni di anni), ove si sono verificati processi di stazionamento e differenziazione di magmi, è stato applicato il modello di raffreddamento conduttivo della camera magmatica, per stimare in maniera semi-quantitativa la possibile distribuzione delle temperature in profondita (capitolo 5).

Geotermica Itallana

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
Le aree in cui sono presenti fluidi con $30 \leq \mathrm{T} \leq 100^{\circ} \mathrm{C}$ in superficie o a debolissima profondita sono identificabili in base alla presenza di sorgenti termali e pozzi artesiani. Il flusso termico convettivo naturale é stato valutato solamente per le manifestazioni termali di cui è nota sia la portata sia la temperatura (vedi Appendice 3).

2.5.1. Revisione del metodo del volume

Ricerche attualmente in corso da parte della Geotermica Italiana, in collaborazione con l'Istituto di Geocronologia e Geochimica Isotopica del CNR di Pisa e con il Dipartimento di Scienze della Terra dell'Universita di Perugia, indicano che le zone di alto flusso di CO_{2} (delimitabili dalla superficie in base alla distribuzione della $P_{C O 2}$ nelle acque di circolazione poco profonda ed alla presenza di emissioni di gas direttamente dal terreno) ben corrispondono con la estensione gia nota dei serbatoi geotermici di alta entalpia (Monte Amiata e Latera), media entalpia (Torre Alfina) e bassa entalpia (Viterbo), come dettagliato nell'articolo allegato, in stampa su Acta Volcanologica.

Pertanto è ragionevole utilizzare questo criterio per delimitare l'estensione dei serbatoi geotermici in zone scarsamente (o non) esplorate mediante pozzi profondi. Dati idrogeochimici di buona qualità analitica ed alta densita di campionamento, tali da consentire lo studio della distribuzione della PCoz nelle acque di circolazione poco profonda, sono disponibili per l'area del Monte Amiata in Toscana, gran parte del Lazio, alcuni settori della Campania (Roccamonfina, Campi Flegrei, Ischia, Vesuvio) e per la zona del Vulture in Basilicata.

Il volume della maggior parte dei serbatoi geotermici presenti in queste zone è stato valutato considerando:

- la estensione areale del serbatoio, stimata in base alla distribuzione della P_{CO} nelle acque di circolazione poco profonda ed alla presenza di emissioni di gas dal terreno;
- lo spessore del serbatoio, valutato per differenza fra la profondita del tetto del potenziale serbatoio (come indicata nell'Inventario delle Risorse Geotermiche Nazionali) ed il limite di profondità massima di 3 km .
La temperatura della maggior parte di questi serbatoi geotermici è stata stimata in base alla "Carta delle temperature al tetto del potenziale serbatoio" e/o alle "Carte delle temperature a differenti profondita" dell'Inventario delle Risorse Geotermiche Nazionali.

2.5.2. Calibrazione del metodo del volume

Come già accennato, per poter applicare questo metodo ad aree non esplorate (o scarsamente esplorate) per mezzo di perforazioni profonde, si è ritenuta necessaria una sua calibrazione, in base ai dati di produzione relativi sia ai campi geotermici in sfruttamento sia a quelli ben

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

conosciuti, essendo stati oggetto di perforazioni profonde e prove di produzione di durata sufficiente. Nel contesto italiano, tali campi geotermici sono: Larderello, Travale, Monte Amiata (Bagnore e Piancastagnaio), Torre Alfina, Latera, Cesano e Mofete. I dati relativi a questi campi geotermici sono stati tratti:

- da progress reports (Cataldi et al., 1970; Di Mario e Leardini, 1974; Ceron et al., 1976; Enel, 1977; Carella et al., 1984, 1985; Ferrara et al., 1985; Billi et al., 1986), la cui lettura critica fornisce un quadro della evoluzione temporale della attivita geotermica in Italia; - da lavori di sintesi (Agip, 1987; Allegrini et al., 1982; Baldi et al., 1982; Bertrami et al., 1984; Buonasorte et al., 1988; Calamai et al., 1970; Cataldi et al., 1963; Duprat e Ungemach, 1985; Gianelli et al., 1988; Guglielminetti, 1986; Minissale, 1991);
- dagli archivi Enel, che ha messo a disposizione del progetto dati non pubblicati.
In particolare l'attenzione è stata focalizzata sui seguenti dati (Tabella 2.1):
(1) estensione areale e spessore dei vari serbatoi geotermici, in modo da stimare il loro volume totale (roccia + fluido);
(2) portata oraria di fluido totale estratto, nel caso dei campi in sfruttamento, ossia Larderello, Travale e Monte Amiata (Bagnore e Piancastagnaio);
(3) portata oraria di fluido totale estraibile, per i campi che sono stati oggetto di perforazioni profonde, prove di produzione di durata sufficiente ed ipotesi di Sfruttamento (Torre Alfina, Latera, Cesano e Mofete).
Tali dati sono stati poi oggetto di elaborazione per investigare le relazioni eventualmente intercorrenti fra portata di fluido totale e volume dei serbatoi geotermici. Questa ricerca è complicata da varie cause, fra i quali le piu importanti sono le variazioni temporali della portata di fluido estratto e la delimitazione del volume di serbatoio geotermico effettivamente produttivo.

Per quanto riguarda quest'ultimo punto bisogna sottolineare che la progressiva estensione dell'area esplorata mediante perforazioni nel campo geotermico di Larderello (il campo per cui è disponibile la documentazione più completa, raccolta nel corso di più di 70 anni di sfruttamento per finalita geotermiche) non è stata accompagnata da un progressivo aumento della produzione; anzi alcuni pozzi si sono esauriti in seguito alla entrata in produzione di altri pozzi vicini. Nel tentativo di calcolare l'area effettivamente produttiva del campo di Larderello è stata moltiplicata l'area esplorata per un fattore di produttività (f_{p}), definito come segue:

$$
f_{p}=n_{p} / n_{d}
$$

dove n_{p} e n_{0} indicano il numero di pozzi in produzione ed il numero di pozzi perforati, rispettivamente. Assumendo che lo spessore medio del serbatoio geotermico di Larderello sia di 2.3 km è stato poi calcolato il volume di serbatoio effettivamente produttivo (Tabella 2.1). Le variazioni, dal 1920 ad oggi, della portata oraria di fluido estratto, del

Geotermica Italiana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
volume di serbatoio effettivamente produttivo e del rapporto fra queste due variabili sono riportate nel diagramma di Fig. 2.1, dal cui esame si rileva che questi parametri sono rimasti pressochè costanti negli ultimi 20-25 anni. Ciò suggerisce che il sistema geotermico di Larderello si è mantenuto, durante quest'ultimo periodo, in uno stato quasistazionario con produttività specifica prossima a $20 \mathrm{t} / \mathrm{h}$ per km^{3} di serbatoio, probabilmente sia per cause naturali che per scelta dell'Enel, che ha evitato di attuare uno sfruttamento "di rapina". E' quindi lecito considerare che questi dati di portata e di volume del serbatoio produttivo siano rappresentativi di una estrazione ottimale, che dovrebbe essere messa in atto anche altrove, in modo da allungare il più possibile la vita produttiva dei sistemi geotermici.

Per gli altri serbatoi geotermici toscani in sfruttamento non e disponibile una documentazione altrettanto ampia quale quella di Larderello. Tuttavia anche per questi campi sono stati calcolati sia l'area sia il volume effettivamente produttivi, come per Larderello.

Per i serbatoi geotermici laziali, invece, l'area produttiva è stata stimata in base alla localizzazione dei pozzi produttivi e di quelli non produttivi; i primi sono allineati secondo il trend appenninico a Torre Alfina e a Cesano e lungo il trend antiappenninico a Latera. L'estensione dell'area produttiva del campo geotermico di Mofete è indicata da AGIP (1987). Lo spessore medio di ciascun serbatoio geotermico è stato valutato in base ai dati di perforazione.

L'esame del diagramma di Fig. 2.2.a, nel quale la portata oraria di fluido totale estratto o estraibile è confrontata con il volume totale del serbatoio geotermico (roccia + fluido) evidenzia la presenza di due allineamenti, uno costituito dai serbatoi toscani a vapore dominante di Larderello, Travale, Bagnore e Piancastagnaio, l'altro comprendente i sistemi a liquido prevalente di Torre Alfina, Latera, Cesano e Mofete. Considerando separatamente questi due allineamenti (Figg. 2.2.b e 2.2.c) si osserva che entrambi sono descritti, in maniera decisamente soddisfacente, da rette di regressione che passano molto vicine all'origine degli assi.

Prescindendo dal significato fisico di queste correlazioni, la loro implicazione più immediata è che i campi geotermici a vapore dominante producono e/o possono produrre in media circa $20 \mathrm{t} / \mathrm{h}$ di fluido per $\mathrm{km}^{3} \mathrm{di}$ serbatoio totale (roccia + fluido), mentre la produttivita specifica di quelli a liquido dominante è mediamente stimabile in circa $40 \mathrm{t} / \mathrm{h}$ di fluido totale per $\mathrm{km}^{3} \mathrm{di}$ serbatoio totale, se si assume che i valori dell'intercetta delle rette riportate nelle Figg. 2.2.b e 2.2.c sono privi di significato fisico (poichè a volume del serbatoio uguale a zero corrisponde necessariamente una portata estraibile pari a zero). Pertanto, per stimare la portata di fluido totale estraibile dai serbatoi geotermici localizzati in aree non esplorate (o scarsamente esplorate) per mezzo di perforazioni profonde si considerera una produttività

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
specifica media $40 \mathrm{t} / \mathrm{h}$ di fluido totale per km^{3} di serbatoio totale (roccia + fluido). Bisogna sottolineare, comunque, che la estrapolazione di questo dato non è scevra da incertezze, anche rimanendo in contesti geologici similari a quelli delle aree campione, poichè i fattori che controllano la produttivita dei serbatoi geotermici (primo fra tutti la permeabilità sono difficilmente esportabili.

	Nome area	Rif. biblio.	Anno	A (km2)	np	nd	Ap (km2)	h (km)	V (km3)	Q (t/h)
1	Torre Alfina	Enel (1977); Buonasorte et al. (1988)	1988	-	-	-	14	1.800	25	1000
2	Latera	Bertrami et al. (1984); Careila et al. (1984)	1983	-	-	-	10	2.000	20	1100
3	Latera	dati Enel non pubblicati	1993	-	-	-	20	1.810	36	1500
4	Cesano	Allegrind et al. (1982)	1982	-	-	-	13	1.250	16	710
5	Mofete	Agip (1987); Guglielminetti (1986)	1990	-	-	-	2	2.400	5	220
6	Larderello	Cataldi et al. (1970)	1969	170	190	467	69	2.300	159	3400
7	Larderello	Di Mario e Leardind (1974)	1970	215	199	642	67	2.300	153	3500
8	Larderello	Di Mario e Leardini (1974)	1973	230	211	696	70	2.300	160	3270
9	Larderello	Ceron et al. (1975)	1975	185	203	511	74	2.300	169	3090
10	Larderello	Enel (1977)	1977	-	-	-	60	2.300	138	3062
11	Larderello	Carella et al. (1984, 1985)	1983	200	192	632	61	2.300	140	3160
12	Larderello	Ferrara et al. (1985); Billi et al. (1986)	1985	250	200	578	87	2.300	199	2800
13	Larderello	dati Enel non pubblicati	1992	205	167	550	62	2.300	143	2900
14	Travale	Enel (1977)	1977	-	-	-	10	2.000	20	417
15	Travale	Ferrara et al. (1985) ; Billi et al. (1986)	1985	30	14	59	7	2.000	14	350
16	Travale	dati Enel non pubblicati	1993	30	14	68	6	2.000	12	440
17	Monte Amlata	Ceron et al. (1975)	1969	40	11	60	7	2.000	15	430
18	Bagnore	Enel (1977)	1977	-	.	-	2	2.000	4	93
19	Piancastagnaio	Enel (1977)	1977	-	-	-	5	2.000	10	214
20	Monte Amiata	Carella et al. (1984, 1985)	1983	46	9	70	6	2.000	12	290
21	Monte Amiata	dati Enel non pubblicati	1992	40	21	97	9	2.000	17	530

Tab. 2.1. La tabella riporta i dati utilizzati per calibrare il metodo del volume; i simboli identificano le seguenti variabili:

- A: area esplorata;

- n_{p} : numero di pozzi in produzione;
- n_{d} : numero di pozzi perforati;

- A_{p} : area produttiva ($A_{p}=A n_{p} / n_{d}$);

- h : spessore medio del serbatoio geotermico;
- V: volume totale (roccia+fluido) del serbatoio geotermico;
- Q: portata oraria di fluido totale estratto (per i campi geotermici di Larderello, Travale
e Monte Amiata) o estraibile (per i campi geotermici di Torre Alfina, Latera, Cesano e
Mofete). I valori di n_{p} e n_{d} non sono riportati per i campi non ancora in sfruttamento.
L'area produttiva dei campi toscani nell'anno 1977 è già fornita da Enel.

Fig. 2.1. Campo geotermico di Larderello. Variazioni temporali, dal 1920 ad oggi, di: (a) porata oraria di fluido estratto, (b) volume di serbatoio eftettivamente produtivo e (c) rapporto tra queste due variabili.

Fig. 2.2. (a) Confronto fra portata oraria di fluido totale estratto (o estraibile) e volume totale del serbatoio geotermico (roccia + fluido). (b) Stesso diagramma per i soli serbatoi toscani a vapore dominante di Larderello, Travale, Bagnore e Piancastagnaio. (c) Stesso diagramma per i soli serbatoi a liquido prevalente di Torre Alfina, Latera, Cesano e Mofete.

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

3. RISERVE GEOTERMICHE ITALIANE

3.1. TOSCANA

La Toscana è sicuramente la regione italiana a maggiore vocazione geotermica, non solamente per la presenza dei campi ad alta entalpia di Larderello, Travale e Monte Amiata (per i quali, i principali dati di produzione sono presentati in Tabella 2.1), ma anche per la diffusione delle risorse di media e bassa entalpia. In effetti il settore della regione Toscana compreso fra la costa tirrenica ed il fiume Arno è sede di una anomalia termica causata, in larga misura, dall'attivita magmatica prevalentemente intrusiva e di tipo acido-anatettico che ha avuto luogo nella regione dal Miocene superiore al Quaternario recente (Marinelli, 1975). In quest'area sono localizzate anche numerose sorgenti termali che sono stato oggetto di attenzione da parte degli operatori geotermici.

D'altra parte, bisogna purtroppo sottolineare che a tutt'oggi non sono disponibili dati idrogeochimici di buona qualità analitica (fra i requisiti fondamentali vi è la determinazione in situ di pHed alcalinità ed alta densità di campionamento (1 campione ogni $2-3 \mathrm{~km}^{2}$), cioè tali da consentire lo studio della distribuzione della Pco2 nelle acque di circolazione poco profonda e la applicazione del metodo del volume revisionato, al fine di quantificare le riserve geotermiche della regione.

Solamente nella zona del Monte Amiata, le sorgenti fredde sono state campionate in maniera sufficientemente dettagliata ed accurata (Chiodini et al., 1988); peraltro, a causa della particolare situazione idrogeologica della zona, le acque di circolazione poco profonda emergono quasi unicamente alla periferia dell'apparato amiatino, in prossimita del contatto fra le vulcaniti permeabili ed il substrato sedimentario impermebile. Pertanto, l'esame della distribuzione della $P_{C O 2}$ nelle acque della zona (Fig. 3.1) evidenzia che al di sopra dei campi geotermici noti sono presenti acque caratterizzate da alti valori di PCO2, ma non permette di trarre ulteriori indicazioni.

Per quanto riguarda il resto della Toscana centromeridionale (Fig. 3.2), si sottolinea che Cataldi et al. (1978), utilizzando il metodo del volume di Muffler e Cataldi (1978), avevano ottenuto i risultati riportati nelle Tabelle $3.1 a \mathrm{e} 3.1 \mathrm{~b}$, per cio che concerne le risorse geotermiche e le riserve geotermiche, rispettivamente. Da un punto di vista dimensionale, questi risultati sono una energia e non sono pertanto confrontabili con quelli che si ottengono con il metodo del volume revisionato. Questi ultimi hanno infatti le dimensioni di una potenza, a causa della correlazione empirica fra volume dei serbatoi geotermici noti e portata oraria di fiuido totale estraibile. D'altro lato, poichè i dati di partenza di Cataldi et al. (1978) si riferiscono a serbatoi potenziali, se si applica ad essi (anzichè ai serbatoi geotermici effettivi, cioè quelli delimitati in base alla distribuzione della CO_{2} nelle acque poco profonde) la produttivita

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

specifica dei serbatoi geotermici noti, si ottengono risultati (potenze termiche) irragionevolmente elevate (Tabelle 3.2.a, 3.2.b e 3.2.c).

In effetti i risultati ottenuti per i campi geotermici di Larderello, Travale-Radicondoli e Monte Amiata (Tabella 3.2.a) sono circa il doppio delle potenze termiche estratte attualmente, pari a 2150,330 e 395 MWt, rispettivamente. Ancora più aleatori sembrano essere i dati che riguardano i serbatoi potenziali di entalpia più bassa (Tabelle 3.2.b e 3.2.c)

	sungace Anfa $1 m^{2}$	AESOURCES rotal \| per unis sres		AESOURCES FOR ELECTRICAL PRODUCTION roral \| per unv ove"		RESOURCES FOR OTHER USES tornt per unit	
1-LIVORNC	275	${ }^{876}, 916.8$	$3.99,0.4$	$0 \cdot 0$	0 O 0	976 ${ }^{\text {i }} 116.8$!	3.19 0.4
2-CASCJAna T.	599	1.052 247.0	$3.10 \mid 0.4$	Q, 0	010	1.852 \| $247.0 \mid$	3.15 0.4
3-ELSA	413	7. 349153.2	2.780 .4	${ }^{30} 197.3$	4.77 , 0.2	419) 55.9	1.090 .9
--cetima	369	$7.380,{ }^{705.1}$	2.50 .5	533. 74.1	1.40, 0.2	855 ! 914.0	$2.24 \quad 0.3$
5-voltefan	$\frac{52}{253}$	$\left[\begin{array}{ll} 513 & 88.4 \\ \hline 1.629 & 216.2 \end{array}\right.$	$\begin{array}{l\|l} \hline 6.27 & 1.1 \\ & 0.6 \\ \hline \end{array}$	292 38.9 938 925.1	$\begin{array}{l\|l} \hline 4.77 & 0.6 \\ \hline 3.57 & 0.5 \\ \hline \end{array}$	${ }_{683}^{229} 29.5$	$-\frac{0.5}{3.56}$
6-S.inimicuand	8as	2,821 [376.2	3.980 .4	0	010	2.029 375.2	$3.78 \quad 0.4$
7-CanpIELIA	622	$2.325{ }^{330.0}$	3.740 .5	0,0	$0 \quad 0$	2.325 310.0	3.74 0.5
--LNOERELLO	$\frac{199}{167}$	$\left.\frac{1.893}{1.859} \right\rvert\, \frac{244.4}{246.8}$	$\left[\begin{array}{ll\|l\|} \hline 45.00 & 2.9 \\ \hline 9.90 & 1.3 \end{array}\right.$	$\begin{cases}1.516 \\ 1.2159 & 251.2\end{cases}$	$\left.\frac{13.80}{5.47} \right\rvert\, \frac{9.8}{0.8}$	$-\frac{2151}{242}=\frac{28.7}{85.5}$	$\left.\frac{3.04}{3.43} \right\rvert\, \frac{0.2}{0.5}-$
9-MOWTECASTELLI	77	529170.5	$6.07,0.9$	244 32.5	3.170 .4	$285^{1} 38.0$	3.70 0.5
90-iravale	$\frac{30}{99}$	${\underset{300}{307}}_{51.6}^{40.01}$	$\left.\underset{3.99}{10.0}{ }_{0.5}^{1.3}\right]$	$\begin{array}{\|l\|l\|} \hline 253 & 33.7 \\ \hline 274 & 29.3 \\ \hline \end{array}$	$\begin{array}{l\|l} 3.43 & 4.9 \\ \hline 2.36 & 0.3 \end{array}$	${ }_{263}^{47} 6.3$	$\begin{array}{l\|l} 4.57 & 0.2 \\ \hline .65 & 0.2 \\ \hline \end{array}$
19-comute	125	$310 \mid 41.3$	2.45 , 0.3	00	$0 \quad 0$	$340 \mid 91.3$	2.46 10.3
12-M0ssa M.ma	410	1.734 151.2	$2.77 \quad 0.4$	$0 \cdot 0$	$0 \quad 10$	1.134 \| 151.2	$2.77 \quad 0.4$
13-Guvderanc	545	$1.554,207.2$	2.850 .4	$0{ }_{1}$	0	$1.559,207.2$	2.850 .4
14-A1802LA	195	${ }^{502}$! 120.3	4.63 / 0.6	64485.9	3.300 .4	258, 34.4	1.32 0.2
15-HONIICIANO	550	1,326 176.8	2.41 0.3	$0^{1} 0$	0 0	1.326, 176.8	2.41 0.3
TE-HCNTEMLRLD	355	1.688, 251.7	5.32 0.7	1.335/178.0	3.76 0.5	$553{ }^{3} 37.7$	1.560 .7
17-Bucaconvento	217	1.378 163.7	6.350 .6	9.90a 153.0	5.29 0.7	230130.7	$9.05 \quad 0.1$
14-GROSESET0	544	1.599 212.1		0 -	10	1.591 ${ }^{212.9}$	2.92 0.4
19-capparmaitico	355	4,985 158.0	3.360 .4	010	00	9.785, 958.0	3.34 0.4
20-MONTEMERS	134	698 ${ }^{\text {c/ }} 93.4$	5.21 0.7	423 \| 56.4	3.96 0.4	275 36.7	2.05 0.3
21-SECEIANO	364	9.685 [224.8	$4.53+0.5$	7.202, 164.2	3.32 0.4	${ }^{47} 963.6$	1.31 0.2
22-PGTINTE	253	844, 112.5	3.3410 .4	$0: 0$	$0 \quad 10$	$\left.{ }^{344}\right\|^{112.5}$	$3.34,0.4$
23-moctalsecm	213	54972.1	$2.54,0.3$	c 0	0	547, 72.1	2.540 .3
24-m, mizaia	${ }_{160}^{21}$	$\begin{array}{\|c\|c} 285 & 38.0 \\ 1.977 & 156.9 \end{array}$	$\left.-\frac{13.27}{7.36} \right\rvert\, \frac{1.8}{1.0}$	$\begin{array}{\|c\|c\|} \hline 277^{1} & 36.9 \\ \hline 1.039: 130.5 \\ \hline \end{array}$	$\left.-\frac{13.19}{5.49} \right\rvert\, \frac{7.0}{0.9}$		$\begin{array}{l\|l} 0.38 & 0.7 \\ \hline 0.05 & 0.7 \end{array}$
25-RADIETEANI	$\frac{96}{60}$	$\begin{array}{l\|l\|} \hline 394 & 38.6 \\ \hline 402 & 53.5 \\ \hline \end{array}$	$\begin{array}{lll} 5.32 & 0.0 \\ \hline 4.57 & 0.5 \end{array}$	$\begin{array}{r\|r\|} 207 & 27.5 \\ \hline 29.0 \end{array}$	$\frac{4.50}{3.40} \frac{0.5}{0.5}$	$\operatorname{L}_{103}^{80}{\underset{1}{\mid} 11.2}_{11.2}$	
26-CASTELL'Azzata	70	169 22.5	2.410 .3	$0^{1} 0$	00	16922.5	$2.41 \quad 0.3$
tetal	6. 689	34,805/4.5400	$(1.02)^{10.51}$			22.7842958 .1	$12.5611_{10.31}$

- Avermet vilues for the mole rugion

Tab. 3.1.a. Risorse geotermiche della Toscana centro-meridionale valutate da Cataldi et al. (1978) utilizzando il metodo del volume di Muffler e Cataldi (1978).

- muroge valuen for the male rition

Tab. 3.1.b. Riserve geotermiche della Toscana centro-meridionale valutate da Cataldi et al. (1978) utilizzando il metodo del volume di Muffler e Cataldi (1978).

Tab. 3.2.a. Risultati della applicazione del metodo del volume revisionato ai serbatoi potenziali della Toscana centro-meridionale con $T_{m}>200^{\circ} \mathrm{C}$, utilizzando i dati di Cataldi et al. (1978). I simboli identificano le seguenti variabili: - A: estensione areale del serbatoio geotermico;

- h : spessore medio del serbatoio geotermico;
- V: volume totale (roccia+fluido) del serbatoio geotermico;
- Q: portata oraria di fluido totale estraibile;
- T-: temperatura minima del serbatoio geotermico;
- T+: temperatura massima del serbatoio geotermico;
- W-: potenza termica minima estraibile dal serbatoio geotermico;
- d: profondità media del tetto del serbatoio geotermico;
- T_{m} : temperatura media del serbatoio geotermico.

L'attendibilità di questi risultati è commentata nel testo.

	Area	A (km2)	h (km)	V (km3)	Q (t/h)	T- (${ }^{\circ} \mathrm{C}$)	T+ (${ }^{\circ} \mathrm{C}$)	W- (MWt)	W+ (MWt)	d (km)	$\mathrm{Tm}\left({ }^{\circ} \mathrm{C}\right)$
1	Monte Amiata b	160	2.200	352	14080	137	217	1833	3142	. 800	177
2	Montemurlo	355	2.200	781	31240	107	187	2977	5882	. 800	147
3	Seggiano	364	2.150	783	31304	93	171	2474	5312	. 850	132
4	Ribolla	195	2.150	419	16770	93	170	1325	2826	. 850	132
5	Livorno	275	1.950	536	21450	81	130	1396	2618	1.050	106
6	Casciana Terme	599	1.950	1168	46722	75	124	2715	5376	1.050	100
7	Montenero	134	1.850	248	9916	126	192	1164	1925	1.150	159
8	Montecastelld	77	1.850	142	5698	126	193	669	1113	1.150	160
9	Larderello b	187	1.850	346	13838	150	216	2010	3072	1.150	183
10	Travale b	99	1.700	168	6732	112	155	681	1017	1.300	134
11	Buonconvento	217	1.600	347	13888	150	217	2018	3099	1.400	184
12	Elsa	413	1.500	620	24780	86	153	1757	3686	1.500	120
13	Cecina	381	1.150	438	17526	117	158	1874	2709	1.850	138
14	Volterra b	263	1.100	289	11572	152	191	1708	2233	1.900	172
15	Radicofani b	88	1.000	88	3520	155	190	532	675	2.000	172
16	TOTALI	3807	-	6726	269036	-	-	25133	44683	-	-

[^0]| | Area | A (km2) | h (km) | V (km3) | Q (t / h) | T- $\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{T}+\left({ }^{\circ} \mathrm{C}\right)$ | W- (MWt) | W+ (MWt) | d (km) | Tm $\left({ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Cornate | 126 | 2.900 | 365 | 14616 | 37 | 104 | 204 | 1342 | . 100 | 70 |
| 2 | Gavorrano | 545 | 2.750 | 1499 | 59950 | 47 | 116 | 1533 | 6340 | . 250 | 82 |
| 3 | Massa Marlttima | 410 | 2.700 | 1107 | 44280 | 45 | 115 | 1029 | 4632 | . 300 | 80 |
| 4 | Monticiano | 550 | 2.700 | 1485 | 59400 | 33 | 102 | 552 | 5316 | . 300 | 68 |
| 5 | Grosseto | 544 | 2.650 | 1442 | 57664 | 57 | 123 | 2145 | 6568 | . 350 | 90 |
| 6 | Roccalbegna | 213 | 2.450 | 522 | 20874 | 59 | 120 | 825 | 2305 | . 550 | 90 |
| 7 | Campiglia | 622 | 2.400 | 1493 | 59712 | 65 | 120 | 2776 | 6593 | . 600 | 22 |
| 8 | Pomonte | 253 | 2.350 | 595 | 23782 | 63 | 122 | 1050 | 2681 | . 650 | 92 |
| 9 | Castell'Azzara | 70 | 2.350 | 164 | 6580 | 60 | 120 | 268 | 727 | . 650 | 90 |
| 10 | Campagnatico | 355 | 2.250 | 799 | 31950 | 70 | 126 | 1671 | 3750 | . 750 | 98 |
| 11 | San Gimignano | 888 | 2.150 | 1909 | 76368 | 68 | 124 | 3817 | 8787 | . 850 | 96 |
| 12 | TOTALI | 4576 | \cdots | 11379 | 455176 | - | - | 15869 | 49040 | - | - |

Tab. 3.2.c. Risultati della applicazione del metodo del volume revisionato ai serbatoi potenziali della Toscana centro-meridionale con $30<T_{m}<100^{\circ} \mathrm{C}$, utilizzando i dati di Cataldi et al. (1978). I simboli identificano le seguenti variabili: - A: estensione areale del serbatoio geotermico;

- h: spessore medio del serbatoio geotermico;
- V : volume totale (roccia+fluido) del serbatoio geotermico;
- Q: portata oraria di fluido totale estraibile;
- T-: temperatura minima del serbatoio geotermico;
- $\mathrm{T}+$: temperatura massima del serbatoio geotermico;
- W-: potenza termica minima estraibile dal serbatoio geotermico;
- W+: potenza termica massima estraibile dal serbatoio geotermico;
- d: profondità media del tetto del serbatoio geotermico;
- T_{m} : temperatura media del serbatoio geotermico.

L'attendibilità di questi risultati è commentata nel testo.

Fig. 3.1. (a) Distribuzione di frequenza e (b) distribuzione geografica della PCO2 nelle acque di circolazione poco profonda della zona di Monte Amiata.

Fig. 3.2. Zone considerate da Cataldi et al. (1978) per valutare il potenziale geotermico della Toscana centrale e meridionale (da Cataldi et al, 1978).

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

3.2.

LAZIO

Il Lazio è una regione con elevate potenzialità geotermiche, come dimostrato dalle ricerche fin qui eseguite da Enel ed Agip-Enel che hanno portato alla identificazione dei campi geotermici di Latera, Torre Alfina e Cesano (per i quali, i principali dati di produzione sono mostrati in Tabella 2.1) ed alla perforazione di altri pozzi geotermici produttivi localizzati nelle zone vulsina, cimina e sabatina.

Il settore tirrenico del Lazio settentrionale è stato caratterizzato, nel corso del Plio-quaternario, da vulcanismo alcalino-potassico sottosaturo in silice, con l'emissione catastrofica di importanti volumi di magmi ed il conseguente sviluppo di importanti collassi vulcanotettonici. Questa attività magmatica è largamente responsabile delle anomalie termiche attualmente presenti in questo settore, principalmente nella fascia che va dai Monti Vulsini ai Monti Sabatini, nella quale sono localizzate anche numerose sorgenti termali.

Passando ad esaminare la distribuzione di frequenza della $P_{C O 2}$ nelle acque di circolazione poco profonda del Lazio centro-settentrionale (Fig. 3.3a) si può osservare che essa ha andamento bimodale e che sono distinguibili: (1) una classe fortemente anomala, caratterizzata da $\mathrm{P}_{\mathrm{CO} 2}>0.18$ bar; e (2) una classe debolmente anomala, con $0.056<\mathrm{P}_{\mathrm{CO} 2}<0.18$ bar. La distribuzione geografica dei punti fortemente anomali, debolmente anomali e non anomali è presentata in Fig. 3.3b. Tralasciando i punti anomali isolati e quelli ubicati alla periferia della regione investigata e concentrando invece l'attenzione sui raggruppamenti di punti anomali sono state individuate le aree che sono interpretabili come l'espressione superficiale di serbatoi geotermici presenti in profondita.

Le caratteristiche di ciascuno di questi serbatoi sono riportate sinteticamente nelle Tabelle 3.3.a, 3.3.b e 3.3.c; nei paragrafi seguenti vengono discusse in dettaglio le caratteristiche dei serbatoi geotermici che sono da inserire fra le riserve e di quelli che, pur essendo classificabili a rigore come risorse subeconomiche, non sono da mettere a nostro avviso completamente in disparte.

3.2.1. Torre Alfina

Il sistema geotermico di Torre Alfina (Buonasorte et al., 1988) è costituito da un corpo idrico con temperatura variabile da 125 a $140{ }^{\circ} \mathrm{C}$, sovrastato da una cappa di gas (essenzialmente CO_{2}), ad una pressione di circa 40 bar; il serbatoio è ospitato entro un alto strutturale delle formazioni carbonatiche mesozoiche in facies toscana. Il livello piezometrico dell'acquifero geotermico è situato circa 200 m al di sotto del piano campagna. Dei pozzi perforati a tutt'oggi, 5 (A2, A4, A7, A14 e RA1) hanno una buona capacita produttiva, mentre 3 (A1, A1 bis e A13) producono solamente CO_{2}, poichè attingono al di sopra

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
dell'interfaccia acqua/ CO_{2}. Il liquido geotermico, la cui salinità totale è prossima a $6000 \mathrm{mg} / \mathrm{kg}$, deposita incrostazioni di CaCO_{3} sia all'interno dei pozzi che negli impianti di superficie, fatto che complica lo sfruttamento del campo, la cui produttività complessiva è stimabile in circa 1000 t/h (Enel, 1977; Buonasorte et al., 1988).

L'area sottesa dai pozzi produttivi è di circa $14 \mathrm{~km}^{2}$, mentre l'estensione dell'area con anomalie di CO_{2} è di circa $21 \mathrm{~km}^{2}$. L'accordo fra questi due valori è soddisfacente e si riflette in una sostanziale confrontabilita fra la produttività anzidetta e quella valutata in base al metodo del volume revisionato (circa $1500 \mathrm{t} / \mathrm{h}$, Tabella 3.3.b). Considerando la temperatura del serbatoio geotermico (125$140{ }^{\circ} \mathrm{C}$) e la profondita del suo tetto rispetto al piano campagna (in media 1200 m), il sistema di Torre Alfina è classificabile come riserva geotermica di categoria B.

3.2.2. Latera

Il serbatoio geotermico di Latera è ospitato entro un alto strutturale (interpretato come il nucleo di una piega rovesciata) del complesso prevalentemente carbonatico di età mesozoica in facies toscana, e si localizza quasi interamente nel settore orientale della caldera di Latera (Bertrami et al., 1984). Dal 1979 ad oggi sono stati perforati 15 pozzi di profondita compresa fra 1000 e 2500 m , 8 dei quali (L2, L3, L3D, L4, L11, L14bis, GR1 e GR2), localizzati lungo la culminazione dell'alto strutturale anzidetto, hanno una buona capacita produttiva e temperatura di serbatoio generalmente compresa fra 190 e $230^{\circ} \mathrm{C}$. Gli altri pozzi perforati nell'area di Latera, a nord, ad est e ad ovest di quelli produttivi sono invece sterili, ed hanno incontrato temperature di serbatoio elevate: per esempio temperature superiori ai $400{ }^{\circ} \mathrm{C}$ sono state misurate a fondo pozzo (3300 m di profondita) nell'llo, mentre una temperatura di $340{ }^{\circ} \mathrm{C}$ è stata misurata a 2800 m di profondita nel pozzo L1 (Gianelli e Scandiffio, 1989). Ipotizzando di produrre dai pozzi localizzati alla estremità settentrionale del campo e di operare la reiniezione totale dei reflui nei pozzi più meridionali, l'Enel ha valutato che la produttivita complessiva del sistema geotermico di Latera è di circa $1500 \mathrm{t} / \mathrm{h}$.

L'area sottesa dai pozzi produttivi è di circa $20 \mathrm{~km}^{2}$, valore non molto inferiore ai circa $32 \mathrm{~km}^{2}$ delimitabili in base alla distribuzione delle anomalie di CO_{2}. Un accordo soddisfacente si osserva conseguentemente fra il dato di produttivita anzidetto e quello stimato in base al metodo del volume revisionato (circa $2300 \mathrm{t} / \mathrm{h}$, Tabella 3.3.a). In base alla temperatura del serbatoio geotermico (190-230 ${ }^{\circ} \mathrm{C}$) ed alla profondita del suo tetto (in media 1200 m rispetto al piano campagna), il sistemá di Latera può essere classificato come riserva geotermica di categoria A.

Geotermica Itallana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

3.2.3. Bolsena

Ad una piccola distanza dal margine sud-occidentale di quest'area è localizzato il pozzo geotermico profondo Montefiascone-1 che è rimasto all'interno di formazioni flyschoidi fino a fondo pozzo. Nella carta delle anomalie gravimetriche (filtro passa-alto 20 km) di Barberi et al. (1993), tale pozzo si situa in una zona di gradiente molto accentuato fra un alto relativo, che coincide in larga misura con la zona anomala in CO_{2}, ed un basso relativo ubicato più a sud. L'andamento della gravità nella regione tosco-laziale è essenzialmente controllato dal forte contrasto di densita fra sedimenti neogenici e coltre vulcanica $\left(2.2<\rho<2.3 \mathrm{~g} / \mathrm{cm}^{3}\right)$, da un lato, e substrato comprendente sia i terreni flyschoidi ($2.5<\rho<2.6 \mathrm{~g} / \mathrm{cm}^{3}$) che quelli carbonatici ($\rho 2.7 \mathrm{~g} / \mathrm{cm}^{3}$), dall'altro (Barberi et al., 1993). Tuttavia è verosimile che il tetto del serbatoio carbonatico al di sotto dell'area anomala in CO_{2} sia localizzato ad una profondita minore di quanto osservato nel Montefiascone-1 e di quanto indicato nella carta del tetto del potenziale serbatoio dell'Inventario delle Risorse Geotermiche Nazionali.

In particolare è stato considerato che il tetto del serbatoio carbonatico al di sotto dell'area anomala in CO_{2} sia mediamente situato ad una profondita di circa 2500 m . In base a ciò ed ai dati di temperatura (160-210 ${ }^{\circ} \mathrm{C}$, stima basata sulle misure eseguite nel pozzo Montefiascone-1), il sistema geotermico di Bolsena viene collocato fra le risorse subeconomiche di categoria B. A causa della modesta produttivita prevista (circa $400 \mathrm{t} / \mathrm{h}$), l'interesse di questo prospetto è attualmente discutibile.

3.2.4. Viterbo

Considerando le basse temperature (50-70 $\left.{ }^{\circ} \mathrm{C}\right)$ e la modesta profondita di questo serbatoio (in media $350-400 \mathrm{~m}$), esso è classificabile come riserva geotermica di categoria C. La notevole produttivita prevista (circa $3700 \mathrm{t} / \mathrm{h}$) e la probabile presenza di potenziali utilizzatori (per esempio la città di Viterbo è molto vicina) rendono questo prospetto molto attraente. E' da sottolineare che i sondaggi già eseguiti dalla societa Terni e dall'Enel hanno evidenziato il carattere artesiano di questo acquifero, fatto non sorprendente considerando l'abbondanza di emergenze termali naturali, e comunque di fondamentale interesse per finalita pratiche.

3.2.5. Vico

La temperatura di questo serbatoio carbonatico è valutabile in $180-230{ }^{\circ} \mathrm{C}$ ed il suo tetto è mediamente situato ad una profondita di quasi 2600 m . Anche se il sistema geotermico di Vico è collocabile fra le riserve Geotermica Italiana 24

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
geotermiche di categoria A, la modestissima produttivita prevista (dellordine di $10 \mathrm{t} / \mathrm{h}$) ed i probabili vincoli ambientali pongono dubbi sul reale interesse di questo prospetto.

3.2.6. Capránica

Prendendo in considerazione la temperatura di questo serbatoio (180-200 ${ }^{\circ} \mathrm{C}$) e la profondita del suo tetto (in media attorno ai 1900 m), il sistema geotermico di Capránica viene classificato come risorsa subeconomica di categoria B. Tuttavia, la interessante produttivita prevista (prossima alle $1000 \mathrm{t} / \mathrm{h}$) ci portano a non trascurare questo prospetto. Infine non si può escludere che questo sistema geotermico si estenda verso sud-est fino alla zona dove l'Enel ha perforato il pozzo Sabatini-6, caratterizzato da buona capacita produttiva e da una temperatura misurata, in erogazione, di $210 \pm 10^{\circ} \mathrm{C}$ a 1920 m di profondita.

3.2.7. Monterosi

Questo serbatoio geotermico (molto similare a quello precedente) viene collocato fra le risorse subeconomiche di categoria B, in base alla profondita del tetto del serbatoio (in media attorno ai 2000 m) ed ai dati di temperatura (180$\left.200^{\circ} \mathrm{C}\right)$. Esso appare degno di interesse per la interessante produttività prevista (700-800 t/h).

3.2.8. Manziana

Anche il serbatoio geotermico di Manziana viene classificato come risorsa subeconomica di categoria B, considerando che la sua temperatura è valutabile in 150-180 ${ }^{\circ} \mathrm{C}$ e che il suo tetto è situato ad una profondita media di circa 1800 m . Anche questo caso è degno di nota per la produttivita prevista, di circa 1000 t/h.

Inoltre non si può escludere che la temperatura di questo serbatoio sia sottostimata; in effetti il geotermometro Na / K (Fournier, 1979) indica una temperatura di circa $220{ }^{\circ} \mathrm{C}$ per la componente cloruro sodica dei Bagni di Stigliano, che costituiscono, in parte, lo scarico naturale di questo sistema.

3.2.9. Grottaferrata e Colli Albani ovest

Si tratta di due serbatoi geotermici classificabili come risorse subeconomiche di categoria C in base alle basse temperature $\left(65-80{ }^{\circ} \mathrm{C}\right.$ a Grottaferrata; $80-100{ }^{\circ} \mathrm{C}$ ai Colli Albani ovest) ed alla considerevole profondita del loro tetto (in media 1400 m a Grottaferrata e 1900 m ai Colli Albani ovest). Tuttavia la notevole produttivita prevista (circa $4000 \mathrm{t} / \mathrm{h}$ a Grottaferrata e circa 8500-9000 t/h ai

Geotermica Italiana

25

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
Colli Albani ovest) e la probabile presenza di potenziali utilizzatori ci portano a non dimenticare del tutto questi due prospetti.

Bisogna sottolineare, inoltre, che la distribuzione della temperatura in profondità è stata ricavata dalle indicazioni fornite dal pozzo Falcognana-1, nel quale sono stati misurati 32.8 e $40.2^{\circ} \mathrm{C}$ a 410 e 614 m di profondita, rispettivamente. Poichè questo pozzo è ubicato alcuni km al di fuori della caldera Tuscolano-Artemisio, verso ovest, non si può escludere che temperature più elevate siano presenti all'interno della caldera.

3.2.10. Cesano

Sebbene le acque di circolazione poco profonda presenti nell'area di Cesano e nelle zone limitrofe non siano state oggetto di campionamento sufficientemente dettagliato, cioè tale da consentire la ricostruzione della distribuzione della $\mathrm{P}_{\mathrm{CO} 2}$ in queste acque e la conseguente applicazione del metodo del volume revisionato, è doveroso ricordare brevemente le caratteristiche di questo serbatoio geotermico.

Il serbatoio geotermico di Cesano è ospitato entro una spessa sequenza di rocce prevalentemente carbonatiche in facies umbra (Baldi et al., 1982). Ad oggi sono stati perforati 13 pozzi profondi: 9 sono sterili o scarsamente produttivi, mentre 4 (C1, C5, C7 e C8) producono miscele bifase di vapore+gas e salamoie con caratteristiche fisicochimiche differenti. La temperatura di fondo pozzo dei pozzi produttivi varia da un minimo di $141^{\circ} \mathrm{C}$ (nel C5) ad un massimo di $221{ }^{\circ} \mathrm{C}$ (nel C7), mentre la temperatura massima misurata è di circa $300{ }^{\circ} \mathrm{C}$, a 3080 m di profondità nel C4 (Allegrini et al., 1982). Nonostante la buona produttività complessiva del sistema geotermico di Cesano, valutabile in circa $700 \mathrm{t} / \mathrm{h}$, la elevata salinita delle salamoie prodotte (fino a circa $350 \mathrm{~g} / \mathrm{l}$) ed il loro potere fortemente incrostante $\left(\mathrm{CaCO}_{3}\right.$ e $\left.\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4}\right)$ ostacolano lo sfruttamento del campo.

Considerando la temperatura del serbatoio e la profondita del suo tetto (mediamente 1750 m circa), il sistema geotermico di Cesano viene collocato fra le risorse subeconomiche di categoria B.

Geotermica Italiana

	Area	A (km2)	h (km)	V (km3)	Q (t/h)	T- $\left({ }^{\circ} \mathrm{C}\right)$	T+ (${ }^{\circ} \mathrm{C}$)	W- (MWt)	W+ (MWt)	d (km)	$\mathrm{Tm}\left({ }^{\circ} \mathrm{C}\right)$
1	2.Latera	32	1.810	57	2295	190	230	440	547	1.190	210
2	11.Vico	1	. 420	$3.4 \mathrm{E}-1$	13	180	230	2	3	2.580	205
3	TOTALI	32	-	58	2309	-	-	443	550		

Tab. 3.3.a. Risultati della applicazione del metodo del volume revisionato ai serbatoi
geotermici, con $\mathrm{T}_{\mathrm{m}}>200^{\circ} \mathrm{C}$, localizzati nel Lazio. I simboli identificano le seguenti variabili:

- A: estensione areale del serbatoio geotermico;
- h : spessore medio del serbatoio geotermico;
- V: volume totale (roccia+fluido) del serbatoio geotermico;
- Q: portata oraria di fluido totale estraibile;
- T-: temperatura minima del serbatoio geotermico;
- T+: temperatura massima del serbatoio geotermico;
- W-: potenza termica minima estraibile dal serbatoio geotermico;
- W+: potenza termica massima estraibile dal serbatoio geotermico;
- d: profondità media del tetto del serbatoio geotermico;
- T_{m} : temperatura media del serbatoio geotermico.

								*-		n+ mats	${ }^{\frac{a}{\text { anm }}}$		Emiceme
			${ }_{3}$	${ }^{\frac{108}{109}}$				-			,		
		2.0									$\frac{2.00}{2.00}$		

Tab. 3.3.b. Risultati della applicazione del metodo del volume revisionato ai serbatoi geotermici, con $100<\mathrm{T}_{\mathrm{m}}<200^{\circ} \mathrm{C}$, localizzati nel Lazio. I simboli identificano le seguenti variabili:

- A: estensione areale del serbatoio geotermico;
- h : spessore medio del serbatoio geotermico;
- V: volume totale (roccia+fluido) del serbatoio geotermico;
- Q: portata oraria di fluido totale estraibile;
- T-: temperatura minima del serbatoio geotermico;
- $\mathrm{T}+$: temperatura massima del serbatoio geotermico;

W-: potenza termica minima estraibile dal serbatoio geotermico;

- W+: potenza termica massima estraibile dal serbatoio geotermico;
- d: profondità media del tetto del serbatoio geotermico;
$-\mathrm{T}_{\mathrm{m}}$: temperatura media del serbatoio geotermico.

	Area	A (km2)	h (km)	V (km3)	Q (t/h)	$\mathrm{T}-\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}+\left({ }^{\circ} \mathrm{C}\right)$	W- (MWt)	W+ (MWt)	d (km)	Tm (${ }^{\circ} \mathrm{C}$)
1	9.Viterbo	35	2.630	92	3682	50	70	107	193	. 370	60
2	5.Magugnano	4	2.270	10	381	40	50	7	11	. 730	45
3	16. Grottaferrata	62	1.600	99	3969	65	80	185	254	1.400	72
4	7. Canino	19	1.500	29	1163	60	80	47	74	1.500	70
5	6.Férento	8	1.490	11	447	60	80	18	29	1.510	70
6	17.Colli Albani W	198	1.100	218	8732	80	100	558	761	1.900	90
7	8. Tuscania	42	1.100	47	1870	80	100	120	163	1.900	90
8	10. La Rocca	5	1.100	6	220	70	80	12	14	1.900	75
9	4.Celleno	13	. 900	12	479	50	80	14	31	2.100	65
10	13. Falerii Novi	8	. 800	6	240	50	70	7	13	2.200	60
11	TOTALI	395	-	530	21183	-	-	1074	1542	-	-

[^1]

Fig. 3.3. (a) Distribuzione di frequenza e (b) distribuzione geografica della Pcoz nelle acque di circolazione poco profonda del Lazio centro-settentrionale.

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

3.3.

Campania
In Campania le investigazioni geotermiche sono state logicamente concentrate nelle aree valcaniche attive dei Campi Flegrei, di Ischia e del Vesuvio, nonché nell'area del vulcano Roccamonfina, la cui attivita ebbe luogo fra circa 1 e 0.15 milioni di anni fa (Watts, 1987). Queste aree sono caratterizzate anche dalla presenza di sorgenti termali e, i Campi Flegrei ed Ischia, manifestazioni fumaroliche.

Le esplorazioni di superficie e di profondita eseguite di recente da Agip-Enel hanno portato alla identificazione del campo geotermico di Mofete (i cui principali dati di produzione, tratti da Guglielminetti, 1986 ed Agip, 1987, sono mostrati in Tabella 2.1) ed ad escludere che siano presenti risorse geotermiche di alta entalpia, a profondita economicamente accessibili, nell'area del Vesuvio (Barberi et al., 1980; Balducci et al., 1983). L'esplorazione geotermica del vulcano Roccamonfina, condotta dalla union Geotermica Italiana facente parte della Unocal Corporation, è culminata nella perforazione dello slim-hole Gallo 85-1 ed ha dimostrato l'assenza di risorse geotermiche di alta entalpia in questo prospetto (Watts, 1987). Nel corso di queste investigazioni geotermiche sono stati raccolti i dati idrogeochimici che consentono di ricostruire la distribuzione della $\mathrm{P}_{\mathrm{coz}}$ nelle acque di circolazione poco profonda presenti in queste aree.

In particolare, l'istogramma di Fig. 3.4a ha andamento bimodale e permette di distinguere: (1) una classe fortemente anomala, caratterizzata da $\mathrm{P}_{\mathrm{coz}}>0.10$ bar, e (2) una classe debolmente anomala, con $0.032<\mathrm{P}_{\mathrm{CO} 2}<0.10$ bar.
In Fig. 3.4b è mostrata la distribuzione geografica dei punti appartenenti a queste due classi anomale e di quelli non anomali. Focalizzando l'attenzione sui gruppi di punti anomali (e trascurando sia i punti anomali isolati sia quelli ubicati alla periferia delle zone oggetto di investigazione) sono state individuate alcune aree, che sono interpretabili come l'espressione in superficie di serbatoi geotermici presenti nel sottosuolo.

Le caratteristiche di questi serbatoi sono elencate nelle Tabelle 3.4.a e 3.4.b. Nei paragrafi seguenti vengono riesaminati quei serbatoi geotermici che sono classificabili come riserve e quelli che, pur facendo parte delle risorse subeconomiche, sono comunque degni di nota.

3.3.1. Suio

Considerando la bassa temperatura (40-70 ${ }^{\circ} \mathrm{C}$) e la piccola profondità di questo serbatoio (in media 400-500 m), esso viene inserito fra le riserve geotermiche di categoria C. La produttività prevista (circa $1300 \mathrm{t} / \mathrm{h}$) è buona. E' molto probabile che questo acquifero sia artesiano, considerando che vi sono numerose emergenze termali naturali. Complessivamente il prospetto è attraente, nonostante rimanga da verificare la presenza di potenziali utilizzatori.

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

3.3.2. Campi Flegrei

L'area delimitabile in base alla distribuzione geografica delle anomalie di CO_{2} si estende lungo la costa del golfo di Pozzuoli su una superficie complessiva di quasi $40 \mathrm{~km}^{2}$. Al suo interno sono presenti numerose sorgenti termali e manifestazioni fumaroliche; queste ultime sono state individuate anche nel golfo di Pozzuoli, indicando o la prosecuzione del sistema geotermico flegreo al di sotto del fondale marino o almeno la presenza localmente di altri sistemi geotermici di minore estensione.

Come evidenziato sia dai pozzi profondi perforati da Agip-Enel nelle zone di Mofete, San Vito e Licola, sia dai sondaggi eseguiti dalla società S.A.F.E.N. (Società Anonima Forze Endogene Napoletane) nel periodo 1940-1950 nelle zone di Mofete, Montenuovo ed Agnano, il serbatoio geotermico flegreo è ospitato prevalentemente all'interno del complesso vulcanico ed in minor misura entro le sottostanti siltiti, arenarie e marne. Il tetto del serbatoio geotermico flegreo non corrisponde con il tetto di una unità litostratigrafica permeabile (coperta da una unita litostratigrafica impermeabile), ma con la comparsa di un minerale di alterazione idrotermale tipico, l'epidoto, che, nei pozzi di Mofete, avviene generalmente attorno ai $220{ }^{\circ} \mathrm{C}$ (Chelini e Sbrana, 1987), in corrispondenza con le prime importanti perdite di circolazione incontrate durante la perforazione dei pozzi profondi (Guglielminetti, 1986). Il serbatoio geotermico si sviluppa entro le sottostanti zone idrotermali a silicati calcico-alluminiferi e termometamorfica (Chelini e Sbrana, 1987).

Pertanto la profondita del tetto del serbatoio flegreo ed il suo spessore sono stati valutati facendo riferimento alla isoterma dei $220^{\circ} \mathrm{C}$, considerando i dati di sottosuolo di Mofete, San Vito ed Agnano. I valori di temperatura del serbatoio ($220-350^{\circ} \mathrm{C}$) e la sua profondita (in media circa 1 km) portano ad inserirlo fra le riserve geotermiche di categoria A. La produttivita prevista (circa $3000 \mathrm{t} / \mathrm{h}$) è elevata. Tuttavia lo sfruttamento di questa risorsa è complicato dalla alta salinita dei fluidi e dal loro potere incrostante. L'intensa urbanizzazione della zona ed il rischio vulcanico e bradisismico sono altri seri ostacoli per lo sviluppo geotermico di quest'area.

3.3.3. Pompei

Fra i differenti settori in cui è stata suddivisa l'area vesuviana, scegliendo come parametro guida la profondita del tetto del basamento carbonatico mesozoico, il settore di Pompei è quello in cui tale basamento si incontra a profondita minore. Anche se la profondità è in media di circa 800 m , essa varia rapidamente e abbastanza regolarmente da circa 400 m all'estremita sud-orientale di questo settore a circa 1200 m al limite nord-occidentale della stessa.

Geotermica Italiana

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

Pertanto almeno la parte sud-orientale del serbatoio di Pompei è classificabile per la sua modesta profondità e per le sue basse temperature ($30-40^{\circ} \mathrm{C}$) come riserva geotermica di categoria C. La notevole produttivita prevista (globalmente circa $3500 \mathrm{t} / \mathrm{h}$) e la probabile presenza di potenziali utilizzatori, come suggerito dalla intensa antropizzazione dell'area, rendono questo prospetto moderatamente attraente. Non è escluso che questo serbatoio abbia carattere artesiano, per lo meno in parte, come suggerito dalla presenza di emergenze debolmente termali a Castellammare di Stabia.

3.3.4. Ischia

L'interesse geotermico dell'isola di Ischia è suggerito dalla storia evolutiva del complesso vulcanico e dalla eta recente delle ultime grandi eruzioni piroclastiche, responsabili della messa in posto del Tufo Verde del Monte Epomeo, 55.000 anni fa, e della Formazione di Citara, tra 43.000 e 33.000 anni fa (Vezzoli, 1988).

Una dettagliata interpretazione dei dati di interesse geotermico diponibili per l'isola d'Ischia, ed in particolare dei dati chimici ed isotopici relativi sia ai fluidi che si scaricano alla superficie naturalmente sia a quelli che sono stati intercettati dai pozzi SAFEN, è stata recentemente proposta da Panichi et al. (1992). Secondo questa ricostruzione, un corpo idrico di salinita moderata ($\mathrm{Cl}<2.5 \mathrm{~g} / \mathrm{kg}$) e con temperatura di almeno $240{ }^{\circ} \mathrm{C}$ è presente a profondità maggiori di 700 m nel sottosuolo dell'isola. Attorno a tale corpo idrico principale e al di sopra di esso si situa un acquifero geotermico secondario, alimentato sia da acqua di mare sia da acque meteoriche, e caratterizzato da $4<C l<10 \mathrm{~g} / \mathrm{kg}$ e temperatura prossima ai $160{ }^{\circ} \mathrm{C}$.

L'estensione areale del serbatoio principale, suggerita dalla distribuzione di fumarole, esalazioni di vapore dal suolo, steam-heated pools e risalite di acque geotermiche (Fig. 3.5), è valutabile in circa $17 \mathrm{~km}^{2}$. Trascurando l'acquifero geotermico secondario, si può assegnare uno spessore medio di almeno 2 km al serbatoio principale, il cui volume globale risulta essere di $34 \mathrm{~km}^{3}$. Ne consegue una produttivita di circa 1300-1400 t/h.

Per l'elevata temperatura (> $240{ }^{\circ} \mathrm{C}$) e la modesta profondita il serbatoio geotermico di Ischia è classificabile come riserva geotermica di categoria A.

Lo sfruttamento di questa risorsa venne tentata dalla SAFEN negli anni '50, quando venne costruita una centrale a ciclo binario da 300 kW . Il tentativo falli a causa dei problemi di incrostazione e corrosione che la tecnologia dell'epoca non era in grado di risolvere. Più recentemente venne progettato, nell'ambito del PFE, un impianto pilota geotermoelettrico a ciclo binario da 500 kW che avrebbe utilizzato il fluido (a $140-150{ }^{\circ} \mathrm{C}$) fornito da un pozzo profondo meno di 200 m (ELC, 1982), ma anche questo progetto si areno, a causa dello scarso interesse delle autorita

Geotermica Italiana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
locali, preoccupate dalla incidenza negativa della geotermia sulle attivita turistiche dell'isola.

	Area	A (km2)	h (km)	V (km3)	Q (t/h)	T- (${ }^{\circ} \mathrm{C}$)	$\mathrm{T}+\left({ }^{\circ} \mathrm{C}\right)$	W- (MWt)	W+ (MWt)	d (km)	$\mathrm{Tm}\left({ }^{\circ} \mathrm{C}\right)$
1	21. Campi Flegrei	38	1.950	75	2987	220	350	677	1128	1.050	285
2	26. Ischia	17	2.000	34	1360	240	300	340	435	1.000	270
3	TOTALI	55	-	109	4347	-	-	1017	1563	-	-

Tab. 3.4.a. Risultati della applicazione del metodo del volume revisionato ai serbatoi
geotermici, con $\mathrm{T}_{\mathrm{m}}>200^{\circ} \mathrm{C}$, localizzati in Campania. I simboli identificano le seguenti variabili:

- A: estensione areale del serbatoio geotermico;
- h : spessore medio del serbatoio geotermico;
- V: volume totale (roccia+fluido) del serbatoio geotermico;
- Q: portata oraria di fluido totale estraibile;
- T-: temperatura minima del serbatoio geotermico;
- T+: temperatura massima del serbatoio geotermico;
- W-: potenza termica minima estraibile dal serbatoio geotermico;
- W+: potenza termica massima estraibile dal serbatoio geotermico;
- d: profondità media del tetto del serbatoio geotermico;
T_{m} : temperatura media del serbatoio geotermico.

	Area	A (km2)	h (km)	V (km3)	Q (t / h)	T- (${ }^{\circ} \mathrm{C}$)	T+ (${ }^{\circ} \mathrm{C}$)	W- (MWt)	W+ (MWt)	d (km)	Tm (${ }^{\circ} \mathrm{C}$)
1	18. Suio	12	2.540	32	1270	40	70	22	66	. 460	55
2	22. Pompei	40	2.180	86	3447	30	40	20	60	. 820	35
3	19. Teano	31	2.000	62	2464	40	100	43	215	1.000	70
4	23. Boscotrecase	47	1.250	58	2326	40	60	41	95	1.750	50
5	20. Giugliano	7	. 500	3	134	60	80	5	9	2.500	70
6	24. Torre del Greco	36	. 450	16	642	60	75	26	37	2.550	68
7	25. Ercolano	12	0	0	0	75	80	0	0	3.000	78
8	TOTALI	183	-	257	10282	-	-	157	482	-	-

[^2]

Fig. 3.4. (a) Distribuzione di frequenza e (b) distribuzione geografica della PCO2 nelle acque di circolazione poco profonda delle zone di Roccamonfina, Campi Flegrei e Vesuvio.

Fig. 3.5. Estensione areale del sistema geotermico di Ischia (da Panichi et al. 1992). Le due aree di colore grigio si riferiscono alle zone dove si incontrano esalazioni di vapore dal suolo, steam-heated pools e sorgenti parzialmente alimentate da acque profonde salate, provenienti dal serbatoio a $\mathrm{T}>240^{\circ} \mathrm{C}$ (grigio scuro) e da quello a $160^{\circ} \mathrm{C}$ (grigio chiaro). L'area di colore bianco è dominata dalla ingressione di acqua di mare.

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

3.4.

Basilicata

In Basilicata è stata oggetto di esplorazione geotermica l'area del vulcano Monte Vulture, la cui attivita ebbe luogo principalmente fra circa 0.7 e 0.5 milioni di anni fa (La Volpe e Principe, 1990), anche se l'ultimo evento eruttivo si è verificato soltanto 130.000 anni fa (Laurenzi et al., 1993).

L'esplorazione di superficie condotta recentemente da Agip-Enel ha portato ad escludere che siano presenti risorse geotermiche di alta entalpia in questo prospetto (Bruni et al., 1984). Nel corso di questa attivita geotermica sono stati raccolti i dati idrogeochimici utilizzati per lo studio della distribuzione della PCO2 nelle acque di circolazione poco profonda presenti in quest'area.

Prendendo in esame l'istogramma di Fig. 3.6a si può osservare che esso ha andamento bimodale e che sono distinguibili: (1) una classe fortemente anomala, caratterizzata da $\mathrm{P}_{\mathrm{CO} 2}>0.18$ bar, e (2) una classe debolmente anomala, con $0.056<\mathrm{P}_{\mathrm{CO} 2}<0.18$ bar. La distribuzione geografica, sia dei punti che ricadono in queste due classi anomale, sia di quelli non anomali, è raffigurata in Fig. 3.6b. Anche in questo caso sono stati individuati i gruppi di punti anomali, che rappresentano l'espressione superficiale di serbatoi geotermici presenti in profondita.

In base alla modesta temperatura e alla rilevante profondita (Tabella 3.5), 3 dei 4 serbatoi individuati nell'area di Monte Vulture (Atella, Filiano e Lavello) sono classificabili come risorse subeconomiche, mentre il quarto (Monticchio) rientra fra le risorse residuali.

	Area	A (km2)	h (km)	V (km3)	Q (t/h)	$\left.\mathrm{T}-{ }^{\circ} \mathrm{C}\right)$	T+ (${ }^{\circ} \mathrm{C}$)	W- (MWt)	W+ (MWt)	d (km)	Tm (${ }^{\circ} \mathrm{C}$)
1	28. Filiano	18	1.180	21	826	40	70	14	43	1.820	55
2	29. Lavello	8	. 950	8	315	45	70	7	16	2.050	58
3	27. Atella	7	. 120	1	32	60	70	1	2	2.880	65
4	30. Monticchio	28	0	0	0	75	90	0	0	3.000	82
5	TOTALI	61	-	29	1174	-	-	23	61	-	-

Tab. 3.5. Risultati della applicazione del metodo del volume revisionato ai serbatoi
geotermici, con $30<T_{m}<100^{\circ} \mathrm{C}$, localizzati in Basilicata. I simboli identificano le seguenti variabili:

- A: estensione areale del serbatoio geotermico;
- h: spessore medio del serbatoio geotermico;
- V: volume totale (roccia+fluido) del serbatoio geotermico;
- Q: portata oraria di fluido totale estraibile;
- T-: temperatura minima del serbatoio geotermico;
- $\mathrm{T}+$: temperatura massima del serbatoio geotermico;
W-: potenza termica minima fornita dal serbatoio geotermico;
- W+: potenza termica massima fornita dal serbatoio geotermico;
d: profondità media del tetto del serbatoio geotermico;
- T_{m} : temperatura media del serbatoio geotermico.

Fig. 3.6. (a) Distribuzione di frequenza e (b) distribuzione geografica della PcO2 nelle acque di circolazione poco profonda della zona di Monte Vulture.

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
4.

RICOSTRUZIONE DEL MODELLO GEOCHIMICOGEOTERMICO CONCETTUALE E VALUTAZIONE DEL POTENZIALE GEOTERMICO DI AREE SELEZIONATE

4.1.

IIPARI

4.1.1. Vulcanologia e vulcano-tettonica

I prodotti vulcanici dell'isola di Lipari mostrano una chiara evoluzione temporale nelle caratteristiche petrologiche (Pichler, 1976, 1980; Crisci et al., 1991). In effetti:

- le vulcaniti più antiche (eruttate fra 223000 e 127000 anni fa) sono per lo più di composizione andesiticobasaltica e basaltica,
- fra 127000 e 92000 anni fa fanno la loro comparsa le andesiti alte in potassio,
- i prodotti più recenti emessi da apparati subaerei localizzati sull'isola stessa hanno composizione riolitica.
Questi ultimi prodotti sono: (1) le pomici del Monte Pilato e le colate di ossidiana delle Rocche Rosse e della Forgia Vecchia, legate alla eruzione del 580 A.D.; (2) i prodotti idromagmatici e lavici del Vallone Gabellotto, eruttati fra circa 11400 e 8600 anni fa; (3) i prodotti idromagmatici e i duomi colata di M.Guardia e M.Giardina, emessi in due cicli distinti, fra circa 22400 e 20300 anni fa e attorno ai 42000 anni fa.

Occorre ricordare che sulla origine di queste rioliti non vi è unanimita di vedute in letteratura: secondo alcuni (per esempio Pichler, 1976; Crisci et al., 1991) queste rocce sarebbero prodotte da fusione parziale della crosta inferiore, mentre secondo altri (per esempio Barberi et al., 1974) esse sarebbero invece i prodotti finali della cristallizzazione frazionata di magmi shoshonitici. Questa controversia non è una mera disquisizione accademica, poichè la prima ipotesi implicherebbe la presenza di una notevole anomalia termica nel sottosuolo dell'isola, mentre la anomalia termica valutabile in base alla seconda ipotesi è relativamente modesta (vedi paragrafo 5.2). Vi è quindi un grosso dubbio sulle caratteristiche della fonte di calore presente nel sottosuolo di Lipari.

L'isola di Lipari è caratterizzata da un complesso contesto vulcano-tettonico che risulta dalla azione combinata di due direttrici tettoniche di importanza regionale (Principe, 1985; Frazzetta et al., 1982):

- l'una ha andamento all'incirca WNW-ESE, ossia parallelo all'orientamento dell'arco eoliano nei pressi dell'isola,
- l'altra, di direzione NNW-SSE, potrebbe rappresentare la prosecuzione della faglia Tindari-Letojanni.
Questo secondo trend tettonico è stato probabilmente quello più importante, poichè sia i magmi riolitici recenti sia i magmi basaltici e andesitici emessi nello stadio più antico di attività (fra circa 223000 e 42000 anni fa) sono risaliti

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
lungo linee tettoniche appartenenti al trend NNW-SSE (Principe, 1985).

4.1.2. Geochimica dei fluidi

Una prospezione geochimica di dettaglio è stata recentemente eseguita sull'isola di Lipari per conto dell'Agip-EMS-Enel. Tali dati, attualmente disponibili nella banca dati GEOCH (Principe e Romano, 1992), sono stati elaborati nell'ambito di questo progetto per ricostruire il modello geochimico-geotermico concettuale dell'isola.

Nel corso della prospezione geochimica sopra menzionata vennero raccolti 150 campioni d'acqua, 8 campioni di gas liberi a terra e 8 campioni di gas liberi a mare.

4.1.2.1. Classificazione chimica delle acque

La maggior parte dei campioni d'acqua provengono da emergenze localizzate lungo la costa dell'isola e risentono di fenomeni di miscelamento con acqua di mare. Non è pertanto sorprendente che, nel diagramma di Langelier-Ludwig di Fig. 4.1.1, numerosi punti d'acqua siano localizzati nei pressi del punto rappresentativo dell'acqua di mare. Queste acque di composizione cloruro sodica hanno salinita ionica generalmente compresa fra 200 e 1300 eq/l (Fig. 4.1.2).

L'esame delle Figure 4.1.1 e 4.1.2 (e di altre opportune sezioni della piramide composizionale di Langelier-Ludwig, non riportate per brevita) mostra che sono ben riconoscibili altre due famiglie di acque ed un punto di composizione peculiare.
(1) Dieci punti d'acqua sono caratterizzati da $\mathrm{HCO}_{3}>\mathrm{SO}_{4}>\mathrm{Cl}$, rapporti fra i tre cationi principali (Na, Ca, Mg) variabili da punto a punto e salinità ionica generalmente compresa fra 70 e $10 \mathrm{meq} / \mathrm{l}$. Questi campioni sono localizzati ai Bagni di San Calogero e nelle sue vicinanze e nei pressi dell'abitato di Lipari.
(2) Tredici punti d'acqua presentano $\mathrm{SO}_{4}>\mathrm{HCO}_{3}>\mathrm{Cl}$, rapporti fra i tre cationi principali (Na, Ca, Mg) pure variabili da punto a punto, come osservato per la famiglia precedente, e salinita ionica di 100-260 meq/1. Questi campioni sono ubicati nei pressi dell'abitato di Lipari.
(3) Un campione, situato alcune centinaia di metri a $S E$ dei Bagni di San Calogero, ha composizione solfato calcico acida ($\mathrm{pH}=2.90$) .
Queste 24 acque, molte delle quali hanno Pcor elevate, sono interpretabili come acque meteoriche di circolazione poco profonda, che ricevono l'apporto di gas acidi (CO_{2} e $\mathrm{H}_{2} S$) provenienti da ambienti geotermici sottostanti.

Infine occorre segnalare che le due sorgenti situate più lontano dalla zona costiera hanno bassa salinita ionica, mentre la loro composizione è differente: cloruro sodica in un caso (02095), cloruro calcica nell'altro (05111).

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

4.1.2.2. Distribuzione delle specie mobili

La distribuzione delle specie mobili Cl, B , Li (ossia quelle la cui concentrazione non è vincolata dalla condizione di saturazione rispetto ad una fase solida) permette di operare alcune distinzioni, di estrema importanza dal punto di vista geotermico, fra le acque della famiglia cloruro sodica.

In effetti, nei diagrammi di correlazione B vs Cl (Fig. 4.1.3) e Li vs Cl (Fig. 4.1.4), mentre la maggior parte dei punti d'acqua si localizza presso l'asse delle ascisse delineando una linea di miscela fra acqua di mare e acque meteoriche di bassa salinita (legate, come già visto, a circuiti poco profondi), dodici punti si distaccano da tale linea per i loro contenuti più elevati sia di B che di Li. Alcuni di questi campioni (10166, 14087, 14148, 14150 e 15086) sono interpretabili come miscele binarie fra acque meteoriche ed un'acqua geotermica, altri (10075, 14132, 14149) come miscele binarie fra acqua di mare e acqua geotermica, altri ancora (10074, 14157, 15072 e 15130) come miscele ternarie fra acque meteoriche, acqua di mare e acqua geotermica. Le due linee di miscela binaria vincolano il punto dell'acqua geotermica e permettono di stimare i suoi contenuti di Cl ($850 \mathrm{meq} / \mathrm{l}$), Li (2.77 meq/l) e B (6.80 mmol/l).
Bisogna sottolineare che queste sorgenti nelle quali è presente la componente geotermica sono localizzate nel settore più settentrionale della costa orientale dell'isola, ossia alle pendici orientali di Monte Pilato.

4.1.2.3. Geotermometria idrogeochimica

Nei diagrammi di correlazione fra il Li, scelto come tracciante dell'acqua geotermica, e le specie chimiche di interesse geotermometrico, cioè $\mathrm{SiO}_{2}, \mathrm{Na}, \mathrm{K}, \mathrm{e} \mathrm{Mg}$, si riconoscono allineamenti analoghi a quelli identificati nelle Figure 4.1.3 e 4.1.4. Sono stati pertanto stimati i contenuti di questi costituenti nell'acqua geotermica pura, nonostante tale ricostruzione sia complicata da una certa dispersione dei punti, soprattutto nel caso del K. I risultati ottenuti $\left(\mathrm{SiO}_{2}=154 \mathrm{mg} / \mathrm{l} ; \mathrm{Na}=15490 \mathrm{mg} / \mathrm{l} ; \mathrm{K}\right.$ fra 915 e $1300 \mathrm{mg} / 1 ; \mathrm{Mg}=918 \mathrm{mg} / 1$) permettono di calcolare le seguenti temperature di equilibrio per l'acqua geotermica pura:

- $T_{\mathrm{Na} / \mathrm{K}}$ fra 176 e $202{ }^{\circ} \mathrm{C}$, in base al geotermometro Na / K (Fournier, 1979);
- Tquarzo $=161{ }^{\circ} \mathrm{C}$, facendo riferimento alla solubilità del quarzo (Fournier and Potter, 1982);
- $\mathrm{T}_{\mathrm{K}}{ }^{2} / \mathrm{Mg}$ fra 128 e $140{ }^{\circ} \mathrm{C}$, considerando il geotermometro $\mathrm{K}^{2} / \mathrm{Mg}$ (Giggenbach, 1988).
Ammettendo che la discrepanza tra le diverse stime termometriche rifletta la differente velocita di reequilibrio dei tre geotermometri è verosimile pensare che l'acqua geotermica abbia percorso abbastanza lentamente il

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
tragitto fra il serbatoio geotermico e il punto di emergenza. In tal caso la temperatura del serbatoio geotermico sarebbe di almeno $175-200{ }^{\circ} \mathrm{C}$.

4.1.2.4. Distribuzione della PCO2, ammonio e temperatura

Ia distribuzione di frequenza della PCO2 nelle acque dell'isola ha andamento trimodale (Fig. 4.1.5) e puo essere considerato come la somma delle tre famiglie di acque seguenti:

- una famiglia comprendente sia i campioni di acqua di mare sia le miscele fra acque meteoriche e acque di mare ricche di questo secondo componente; i valori di PCO2 tipici di queste acque sono compresi fra 0.56 e 1.8 mbar; - una famiglia "normale" comprendente le acque la cui $\mathrm{P}_{\mathrm{CO} 2}$ è compresa fra 1.8 e 32 mbar;
- una famiglia "anomala", caratterizzata da $\mathrm{P}_{\mathrm{CO} 2}>32$ mbar, a causa di apporti di gas ricchi di CO_{2} provenienti da serbatoi geotermici sottostanti.
Nell'ambito della famiglia "anomala" sono state distinte le acque con $32<\mathrm{P}_{\mathrm{CO} 2}<178 \mathrm{mbar}$ da quelle con $178<\mathrm{E}_{\mathrm{co} 2}<$ 1000 mbar; questi due gruppi sono rappresentati, con simboli differenti, sulla carta di Fig.4.1.6, dal cui esame si rileva che i campioni anomali sono localizzati nei pressi del centro abitato di Lipari e lungo la costa occidentale del corpo principale dell'isola.

Bisogna sottolineare che le sorgenti nelle quali è presente la componente geotermica sono caratterizzate da basse $P_{\text {col }}$, generalmente comprese fra 1 e 20 mbar; soltanto il campione 14150 presenta una PCo2 superiore (76 mbar); pertanto l'acqua geotermica ha verosimilmente subito una sensibile perdita di gas, forse per ebollizione, prima di raggiungere i siti di emergenza.

I diagrammi di correlazione fra il Li, tracciante dell'acqua geotermica, e le variabili ammonio (Fig. 4.1.7) e temperatura (Fig. 4.1.8) mostrano che numerosi campioni sono caratterizzati da elevati valori di queste due variabili e contenuti di li molto bassi, tipici delle acque meteoriche, dell'acqua di mare e delle miscele fra questi due componenti. Molti di questi campioni presentano anche valori di PCO2 anomali o sono comunque localizzati nei pressi del centro abitato di Lipari e lungo la costa occidentale del corpo principale dell'isola, cioè nelle zone caratterizzate da $\mathrm{P}_{\mathrm{CO} 2}$ anomale.

Questa perfetta coincidenza di anomalie di CO_{2}, ammonio e temperature indica que esse sono causate da fenomeni di fuga di vapore da un serbatoio geotermico localizzato al di sotto di queste aree anomale.

4.1.2.5. Geochimica dei gas

Degli 8 campioni di gas raccolti a terra per conto di Agip-EMS-Enel, soltanto quello della sorgente termale Fossa

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

di Faurdo presenta un elevato contenuto di CO_{2} (97\%V). La manifestazione delle vecchia cava di caolino, la sola nella quale è presente $l^{\prime} \mathrm{H}_{2} \mathrm{~S}$, mostra un contenuto di CO_{2} del 79 $\% v$, mentre negli altri casi la concentrazione di anidride carbonica è inferiore al 60 \%ved in alcuni casi è di alcune unita percentuali solamente. E^{\prime} molto probabile che il verificarsi di processi naturali, quali la interazione con acque di circolazione poco profonda, e/o la contaminazione con aria nel corso del prelievo dei campioni abbiano profondamente mutato le caratteristiche delle miscele gassose presenti in profondita. Queste analisi, cosi come quelle degli 8 campioni raccolti a mare (per la ovvia interazione dei gas con l'acqua marina) non sono quindi utilizzabili per valutazioni geotermometriche.
E^{\prime} invece di estremo interesse la loro localizzazione. Infatti le emissioni gassose non si localizzano solamente nei pressi del centro abitato di Lipari e lungo la costa occidentale del corpo principale dell'isola, cioè nelle zone caratterizzate da PCO2 anomale, ma anche fra queste due zone (Fig. 4.1.6), indicando la probabile presenza di un unico sistema geotermico che si estende sia ad est che a sud di Monte S. Angelo.

La applicazione di un modello geotermometrico basato sugli equilibri:

```
\(3 \mathrm{CO}_{2}+\mathrm{CH}_{4}=4 \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}\)
\(3 \mathrm{FeS}_{2}+6 \mathrm{H}_{2}+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{Fe}_{3} \mathrm{O}_{4}+6 \mathrm{H}_{2} \mathrm{~S}+\mathrm{CH}_{4}\)
pirite magnetite
```

aveva portato Cioni et al. (1988) a stimare una temperatura di 170-180 ${ }^{\circ} \mathrm{C}$ nella zona di equilibrazione dei gas che alimentano le fumarole della vecchia cava di caolino. La probabile condensazione di parte del vapore acqueo e la conseguente perdita preferenziale dei gas più solubili (dato il basso flusso di queste manifestazioni) suggeriscono di considerare queste stime termometriche come valori minimi, mentre i valori massimi stimabili approssimano i $220^{\circ} \mathrm{C}$.

4.1.2.6. Modello geochimico-geotermico concettuale

Un acquifero geotermico con una temperatura di 200-220 ${ }^{\circ} \mathrm{C}$ è presente nel sottosuolo dell'isola di Lipari, perlomeno nei pressi della costa occidentale e della fascia Bagni di San Calogero-Lipari. Estesi fenomeni di ebollizione avvengono nelle porzioni sommitali di questo serbatoio ed i vapori separati interagiscono con gli acquiferi sovrastanti riscaldandoli e modificandone le caratteristiche chimiche, soprattutto i contenuti di CO_{2} e ammonio. Le soluzioni acquose contenute entro questo acquifero geotermico (con contenuto di cloruro valutabile in circa $30 \mathrm{~g} / \mathrm{l}) \mathrm{si}$ scaricano alla superficie lungo il tratto costiero situato alle pendici orientali di Monte Pilato, non prima di essersi miscelate o con acque meteoriche di circolazione poco profonda, o con acqua di mare o con entrambe.

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

4.1.3. Valutazione delle riserve geotermiche

L'estensione areale del serbatoio geotermico, indicata sia dalla distribuzione della CO_{2}, dello ammonio e della temperatura nelle acque di circolazione poco profonda sia dalla localizzazione delle manifestazioni gassose, è valutabile in circa $8 \mathrm{~km}^{2}$. La superficie che sottende l'acquifero geotermico coincide anche con gran parte delle zone di alterazione idrotermale riconosciute nelliisola (Principe, 1985). L'allungamento di questa superficie, secondo le stesse direzioni dei due principali trend tettonici attivi, potrebbe indicare che la permeabilta del serbatoio sia controllata essenzialmente da fattori tettonici e che la sua estensione sia quella indicata dagli indizi geochimici e geologici anzidetti. D'altro lato, considerando la distribuzione dei punti d'acqua, non si può escludere che il sistema si estenda ulteriormente verso l'interno dell'isola. Tuttavia, volendo valutare le riserve geotermiche da un punto di vista conservativo, si è considerato che l'estensione areale del serbatoio sia di circa $8 \mathrm{~km}^{2}$.

Assegnando al tetto del serbatoio una profondita media di circa 250 m (per analogia con quanto osservato a vulcano Porto, vedi capitolo seguente), il suo spessore è valutabile in 2.75 km , il suo volume totale in $22 \mathrm{~km}^{3} e$ la portata estraibile in circa $880 \mathrm{t} / \mathrm{h}$, nell'ipotesi di un sistema a liquido dominante con permeabilità similare a quella dei campi geotermici esplorati. Per l'elevata temperatura (200$220^{\circ} \mathrm{C}$) e la modesta profondità il serbatoio geotermico di Lipari è classificabile come riserva geotermica di categoria A.
$\mathrm{Cl}+\mathrm{HCO}_{3}$ (eq \%)

Fig. 4.1.1. Diagramma di Langelier-Ludwig per le acque dell'isola di Lipari

SO4 (eq/1)
Fig. 4.1.2. Diagramma di correlazione $\mathrm{Cl}+\mathrm{HCO}_{3}$ vs SO_{4} per le acque dell'isola di Lipari; questo grafico è equivalente ad una qualunque sezione (della piramide composizionale di Langelier-Ludwig) con traccia parallela all'asse delle ascisse nel diagramma di Fig. 4.1.1.; a) campo delle alte salinità ioniche; b) campo delle basse salinità ioniche.

Fig. 4.1.3. Diagramma di correlazione boro vs cloruro per le acque dell'isola di Lipari. Le rette rappresentano le linee delle miscele binarie acqua geotermica-acqua di mare ed acqua geotermica-acque meteoriche.

Fig. 4.1.4. Diagramma di correlazione litio vs cloruro per le acque dell'isola di Lipari. Le rette rappresentano le linee delle miscele binarie acqua geotermica-acqua di mare ed acqua geotermica-acque meteoriche.

Fig. 4.1.5. Distribuzione di frequenza della PCO2 nelle acque dell'isola di Lipari.

Fig. 4.1.6. Distribuzione geografica della PCO2 nelle acque dellisola di Lipari.

Fig. 4.1.7. Diagramma di correlazione fra il litio, tracciante dell'acqua geotermica, e l'ammonio per le acque dell'isola di Lipari.

Fig. 4.1.8. Diagramma di correlazione fra il litio, tracciante dell'acqua geotermica, e
la temperatura per le acque dell'isola di Lipari.

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
4.2.

Vulcano

4.2.1. Attivita geotermiche effettuate a Vulcano

L'isola di Vulcano è stata oggetto di esplorazione geotermica negli anni '50, allorchè vennero perforati due pozzi, denominati VU 1 e VU 2 bis, nei pressi delle fumarole della Baia di Levante. Nel secondo venne incontrato un livello produttivo, fra $185 \mathrm{~m} e$ fondo pozzo, in corrispondenza del quale furono misurate temperature statiche di $194-198^{\circ} \mathrm{C}$. La portata del pozzo non superò le 7 t / h di vapore umido, in condizioni strozzate (Sommaruga, 1984).

Negli anni ' 80 la Joint-Venture Ente Minerario Siciliano - Agip - Enel ha ripreso in considerazione la possibilita di produrre energia geotermoelettrica a Vulcano; a tal fine, sono stati effettuati rilievi di esplorazione multidisciplinare e sono stati perforati due pozzi profondi, denominati "Isola di Vulcano 1" e "Vulcano Porto 1" o, piu brevemente IV1 e VPI. Tali perforazioni sono localizzate rispettivamente alle pendici sud-occidentali e settentrionali dell'apparato de La Fossa (Fig. 4.2.1).

I pozzi hanno raggiunto profondita di 2050 m (IV1) e 1000 m (VP1); in entrambi sono state eseguite perforazioni direzionali fino a 1700 m (IV1) e 975 m (VP1), con deviazioni massime verso nord di 457.9 m , nell'IV1, e 281 m , nel VP1 (Gioncada e Sbrana, 1991).

Nel pozzo IV1 vennero misurate temperature inferiori a $120{ }^{\circ} \mathrm{C}$ fino a circa 1200 m , mentre a profondita maggiori venne incontrato un gradiente termico molto accentuato, fino a raggiungere temperature eccedenti il punto di fusione dello zinco (419 ${ }^{\circ} \mathrm{C}$) a fondo pozzo. Nel corso della perforazione dell'IV1 si riscontrarono perdite di circolazione solamente fino a circa 600 m di profondità (Silvano, 1985). A partire da 1360 m , questo pozzo penetrò in una intrusione monzogabbroica (Faraone et al., 1986), pressochè impermeabile dal punto di vista idraulico (Silvano, 1985).

4.2.2. Vulcanologia

In base ai dati esistenti (Keller, 1980; Frazzetta et al., 1984; Frazzetta e La Volpe, 1987; De Rosa et al., 1988; De Astis et al., 1989; Gillot et al., 1990; Gioncada e Sbrana, 1991; Clocchiatti el al., 1993), l'evoluzione della attivita vulcanica avvenuta nellisola puo essere schematizzata come segue (Fig. 4.2.1):

- fra 120000 e 98000 anni fa viene costruito lo stratocono di vulcano sud, costituito da lave e piroclastiti di composizione variabile da trachibasaltica a trachiandesitica; gli ultimi episodi determinano la formazione di una struttura calderica (la caldera del Piano);
- fra 97000 e 78000 anni fa vengono emesse lave leucittefritiche all'interno della caldera;

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

- fra 78000 e 15500 anni fa ha luogo una attivita piroclastica trachibasaltica; sulla localizzazione delle cui bocche eruttive non vi è unanimità di vedute fra i vari autori;
- successivamente viene costruito il complesso dei Lentia, costituito prevalentemente da rioliti e subordinatamente da latiti e trachiti;
- in un momento imprecisato fra 25000 e 7300 anni fa, gran parte del Lentia, parte del Piano e forse il settore meridionale di Lipari sono implicati in uno o più collassi di notevoli proporzioni (struttura della Fossa);
- lave latitiche sottomarine e subordinate ialoclastiti riempiono buona parte di questa depressione;
- a partire da circa 6000 anni fa ha inizio l'edificazione del cono de La Fossa, costituito da depositi piroclastici e subordinatamente da lave di composizione trachitica e riolitica; l'ultima eruzione, fortemente esplosiva, ha avuto luogo nel periodo 1888 1890;
- nel 183 a.C. incomincia l'attivita di Vulcanello, con l'emissione di lave e piroclastiti da leucit-latiさici a trachitici.
In sintesi l'attività vulcanica può essere distinta in due fasi:
- una prima fase (120000 - 15500 anni fa) caratterizzata dall'emissione di prodotti poco evoluti, da trachibasalti a latiti,
- una seconda fase recente nel corso della quale sono stati eruttati prodotti più evoluti, da latiti a rioliti. Le caratteristiche geochimiche di questi magmi sono determinate, in larga misura, da processi di differenziazione per cristallizzazione frazionata, che hanno avuto luogo in camere magmatiche localizzate a profondita differenti. Le camere magmatiche della seconda fase, meno profonde e più recenti, hanno certamente originato importanti anomalie termiche, tutt'ora presenti nel sottosuolo dell'isola.

4.2.3. Geochimica dei fluidi

Numerosi dati geochimici relativi alle fumarole del cratere de La Fossa, alle fumarole della Baia di Levante ed alle acque dei pozzi e delle cisterne della zona del porto sono stati raccolti nel corso di ripetuti campionamenti eseguiti per fini di sorveglianza vulcanica.

Una serie completa di dati idrogeochimici, raccolti nei maggio del 1990 (open file dell'Istituto di Geocronologia e Geochimica Isotopica del C.N.R. di Eisa), è stata elaborata ed interpretata per lo scopo del presente progetto.

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

4.2.3.1. Classificazione chimica delle acque

L'esame di opportune sezioni della piramide composizionale di Langelier-Ludwig (Figg. 4.2.2 e 4.2.3), permette di identificare i seguenti tipi idrogeochimici:

- tipo A: acque di composizione variabile da $\mathrm{Cl}-\mathrm{HCO}_{3}-\mathrm{Ca}-$ Na a $\mathrm{HCO}_{3}-\mathrm{Cl}-\mathrm{Ca}-\mathrm{Na} e$ di bassa salinita ionica, attorno a 3 meq/l; questo tipo comprende le acque meteoriche immagazzinate entro le cisterne per approvvigionamento idrico.
- tipo B: acque con salinita ionica compresa fra 25 e 75 meq/l e composizione generalmente $\mathrm{Cl}-\mathrm{SO}_{4}-\mathrm{Na}$; in questo
tipo vengono inseriti anche due campioni caratterizzati
da contenuti salini dello stesso ordine e composizione $\mathrm{SO}_{4}-\mathrm{Cl}-\mathrm{Na}$ e $\mathrm{Cl}-\mathrm{HCO}_{3}-\mathrm{Na}$;
- tipo C: acque di composizione variabile da $\mathrm{HCO}_{3}-\mathrm{SO}_{4}-\mathrm{Na}$ a $\mathrm{SO}_{4}-\mathrm{HCO}_{3}-\mathrm{Na} e$ salinita ionica compresa fra 60 e 90 meq/I; a questo tipo idrogeochimico sono riferibili anche due campioni atipici: uno ha composizione $\mathrm{HCO}_{3}-\mathrm{Cl}-\mathrm{Na}$, l'altro ha composizione $\mathrm{SO}_{4}-\mathrm{Cl}-\mathrm{Na}$ ed è caratterizzato da una salinità ionica di ben $160 \mathrm{meq} / \mathrm{l}$;
- tipo D: acque di composizione SO_{4}-Ca e salinita ionica prossima a 100 meq/l.

4.2.3.2. Distribuzione delle specie mobili

Fra le specie mobili, il litio è particolarmente interessante in quanto conferma la suddivisione operata in base ai costituenti principali. In effetti nel diagramma di correlazione Li vs Cl (Fig. 4.2.4) si osserva che:

- le acque del tipo A sono caratterizzate da bassissimi contenuti di Li e Cl;
- le acque del tipo B presentano contenuti di litio compresi fra 0.0095 e $0.023 \mathrm{meq} / \mathrm{l}$;
- le acque dei tipi C e D si distinguono per contenuti di
litio più elevati, nell'intervallo $0.029-0.083 \mathrm{meq} / 1$.
I maggiori contenuti di cloruro dei campioni 19 e 25 sono probabilmente imputabili a contaminazioni antropiche; in effetti, nel caso del 25, all'eccesso di cloruro si accompagna un eccesso pressochè equivalente di potassio.

4.2.3.3. Distribuzione della $\mathrm{P}_{\mathrm{CO} 2}$ e della temperatura

Prescindendo dai due campioni provenienti da cisterne, (la cui Pcoz è ovviamente prossima al valore atmosferico medio, $\left.\log \mathrm{P}_{\mathrm{CO} 2}=-3.5\right)$, l'esame dell'istogramma di Fig. 4.2 .5 mostra che la PCO2 nelle acque del porto ha una distribuzione bimodale. In effetti sono individuabili una famiglia normale, caratterizzata da $\mathrm{P}_{\mathrm{CO} 2}<56 \mathrm{mbar}$, ed una famiglia anomala, con P_{CO} superiori a tale soglia.

Tutti i campioni appartenenti ai tipi C e D hanno valori di PCO2 anomali, mentre solo 2 dei 14 campioni del tipo B presentano P_{CO} anomale.

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
La distribuzione geografica della Pco2 nelle acque del Porto (Fig. 4.2.6) mostra che i campioni con PCO2 anomale sono distribuite in due fasce, ad andamento NE-SW, in prossimita delle pendici nord-occidentali del cono de la Eossa.

Per esaminare la distribuzione della temperatura nelle acque del porto è conveniente riferirsi al diagramma di correlazione T vs Li (Fig. 4.2.7), poichè il litio permette di discriminare le acque dei tipi C e D, caratterizzate da contenuti di questa variabile $>0.029 \mathrm{meq} / \mathrm{l}$, dalle acque dei tipi A e B, che presentano contenuti di litio < 0.023 meq/1. L'esame di questo diagramma indica che tutte le acque dei tipi C e D sono termicamente anomale, presentando $29<T<$ $69^{\circ} \mathrm{C}$; a queste sono da aggiungere tre campioni termicamente anomali del tipo B, che sono localizzati immediatamente a NW della fascia occidentale anomala in Pco2.

4.2.3.4. Sintesi idrogeochimica

I dati idrogeochimici discussi nei tre paragrafi precedenti indicano che:

- le acque del tipo B sono interpretabili come il prodotto della interazione fra acque meteoriche e rocce, in condizioni di $T, P_{C O 2}$ normali, ossia similari a quelle generalmente incontrate entro acquiferi poco profondi;
- le acque dei tipi C e D sono originate da processi di interazione fra acque meteoriche e rocce in condizioni di T, Pcoz anomale, causate dallingresso di fluidi contenenti gas acidi entro acquiferi poco profondi; l'apporto di gas acidi determina in effetti una maggiore aggressivita delle acque nei confronti delle rocce, che si riflette nella salinita ionica e nel contenuto di litio più elevati.
Alla luce del contesto geologico della zona e dello stato di attivita in cui si trova attualmente l'apparato de La Fossa, non è escluso che tali fluidi siano di provenienza magmatica piuttosto che geotermica.

4.2.3.5. Geochimica dei gas fumarolici

Come già accennato precedentemente, sia le fumarole del cratere de La Eossa, sia quelle della Baia di Levante sono stati e sono tuttora oggetto di attenzione per fini di sorveglianza vulcanica.

La temperatura delle fumarole crateriche ha subito importanti variazioni nel corso di questo secolo, raggiungendo un massimo relativo di $615{ }^{\circ} \mathrm{C}$ nel 1924 (De Fiore, 1924) ed un massimo assoluto di circa $690^{\circ} \mathrm{C}$ nel 1992. I fluidi emessi da queste fumarole hanno caratteristiche tipicamente vulcaniche, essendo ricchi di gas acidi quali $\mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{~S}$, HCl e HF . Come riconosciuto da Cioni e D'Amore (1984), questi fluidi sono miscele fra:

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

- un componente profondo, legato alla presenza di un corpo magmatico in degassamento;
- un componente più superficiale, prodotto dalla evaporazione delle salamoie che si infiltrano localmente entro i condotti fumarolici; le reazioni ad elevatissima temperatura fra questi vapori, i sali depositati dalle salamoie e le rocce silicatiche sono in larga misura responsabili della formazione di $\mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{~S}$, HCl e HF (Chiodini et al., 1993).

Le fumarole della Baia di Levante, invece, hanno mantenuto costantemente una temperatura di circa $100{ }^{\circ} \mathrm{C}$ in questo secolo. Esse sono alimentate dai vapori separati per ebollizione dall'acquifero geotermico sottostante (Cioni e D'Amore, 1984), che venne raggiunto dal pozzo geotermico VU 2 bis, come già osservato più sopra. In effetti, le condizioni termodinamiche della zona dove i gas si equilibrano (mediamente circa $200{ }^{\circ} \mathrm{C}$, Chiodini e Cioni, 1989) sono confrontabili con le condizioni di P, T incontrate nel livello produttivo più profondo del pozzo VU 2 bis.

Tuttavia, le condizioni termodinamiche in questo acquifero hanno subito significative variazioni temporali, che sono in fase con le variazioni registrate alle fumarole crateriche: in particolare, agli aumenti del contributo del componente profondo nelle fumarole crateriche corrispondono fenomeni di pressurizzazione entro questo acquifero geotermico. Pertanto, è verosimile che l'apporto di fluidi magmatici profondi sia responsabile di questi fenomeni (Chiodini et al., 1992).

4.2.3.6. Modello geochimico-geotermico concettuale

Nel sottosuolo di Vulcano Porto è presente un acquifero geotermico la cui temperatura è di almeno $200^{\circ} \mathrm{C}$, come evidenziato sia dalle misure eseguite nel pozzo vu 2 bis, sia dalle caratteristiche composizionali dei fluidi scaricati dalle fumarole della Baia di Levante. La temperatura di questo serbatoio raggiunge i $250{ }^{\circ} \mathrm{C}$, come indicato dalla presenza di una paragenesi idrotermale propilitica nella parte più profonda del pozzo VP1 (Gioncada e Sbrana, 1991). Questo acquifero si estende dalle manifestazioni fumaroliche della Baia di Levante verso SW per circa $1.2 \mathrm{~km} e \mathrm{la}$ sua larghezza è mediamente di circa 350 m (Fig. 4.2.6).

I vapori separati da questo acquifero geotermico si scaricano alla superficie lungo la spiaggia della Baia di Levante, mentre più a $S W$ entrano negli acquiferi poco profondi ivi presenti, riscaldandoli e causando profonde modifiche nelle caratteristiche composizionali delle acque.

L'acquifero geotermico di Vulcano Porto è alimentato non solo da acque meteoriche, ma anche da fluidi profondi magmatici.

Geotermica Italiana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

4.2.4. Valutazione delle riserve geotermiche

Il volume totale (roccia+acqua) dell'acquifero geotermico di Vulcano porto è valutabile in circa $1.2 \mathrm{~km}^{3}$, considerando l'estensione areale riportata nel paragrafo precedente ($1.2 \times 0.35 \mathrm{~km}^{2}$) ed assumendo che il tetto di questo serbatoio sia ovunque attorno ai 250 m di profondita, come provato dal pozzo VU 2 bis.

L'elevato spessore di questo serbatoio (2.75 km) è in accordo con le evidenze geologiche. In effetti, corpi similari alla intrusione monzogabbroica incontrata dal pozzo IV1 non sono presenti nel sottosuolo della parte settertrionale dell'isola, dove esiste invece una spessa sequenza prevalentemente lavica, potenzialmente permeabile per fratturazione (Gioncada e Sbrana, 1991).

La portata estraibile è valutabile in circa 45-50 t/h, nell'ipotesi di un sistema a liquido dominante con permeabilita similare a quella dei campi geotermici esplorati.

Considerando la temperatura (200-250 $\left.{ }^{\circ} \mathrm{C}\right)$ e la modesta profondita, il serbatoio geotermico di Vulcano Porto si colloca fra le riserve geotermiche di categoria A. Tuttavia lo sfruttamento di questo sistema geotermico è complicato dai seguenti fattori:

- l'acquifero è già stato pressurizzato per apporto di fluidi magmatici, senza che venissero raggiunte le condizioni per il verificarsi di esplosioni freatiche; è possibili che tali condizioni siano raggiunte in futuro; - l'area di Vulcano Porto corre un serio rischio di essere devastata da nubi di surge, nel caso si verifichi l'evento vulcanico atteso di massima pericolosita (Frazzetta e La Volpe, 1991).

1 - South Vulcano lavas and pyroclastics (trachybasalts and trachyandesites);
2 - Piano caldera filling deposits. (tephrites and trachybasalts);
3 - Welded scoriae blankets (trachybasalts);
4 - Lentia complex lavas and pyroclastics (rhyolites-latites);
5 - Punta Roia lavas (Lc-latites);
6 - Fossa cone pyroclastics and lavas (trachytes and rhyolites);
7 - Vulcanello lava platform (Lc-latites);
8 - Roveto lavas (trachytes);
9 - Vulcanello cones pyroclastics (Lc-latites and trachytes);
10 - Alluvium and beach deposits.

Fig. 4.2.1. Mappa geologica schematica dell'Isola di Vulcano (da Gioncada e Sbrana, 1991).

Fig. 4.2.2. Diagramma di Langelier-Ludwig per le acque di Vulcano Porto
Wel $+\mathrm{H}_{4}$
$(\mathrm{eq} \%)$
$\times 9.8$
\mathbf{f}
acqua di mare

Fig. 4.2.3. Diagramma di correlazione Cl vs $\mathrm{HCO}_{3}+\mathrm{SO}_{4}$ per le acque di Vulcano

 diagramma di Fig. 4.2.2.
$46.2015+4$

$H \operatorname{Hog}+\mathrm{man}(\mathrm{meq} / \mathrm{l})$

Fig. 4.2.4. Diagramma di correlazione Li vs Cl per le acque di Vulcano Porto.

Fig. 4.2.5. Distribuzione di frequenza della P_{CO} nelle acque di Vulcano Porto.

Fig. 4.2.6. Distribuzione geografica della PCO2 nelle acque di Vulcano Porto. Spiegazione dei simboli:

- cerchi neri: PCO2 > 56 mbar;
- cerchi bianchi: PCO2 < 56 mbar.
(
Fig. 4.2.7. Diagramma di correlazione temperatura vs Li per le acque di Vulcano
Porto

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
4.3.

PANTELLERIA
4.3.1. Attività geotermiche effettuate a Pantelleria

Il promettente quadro geo-vulcanologico di Pantelleria è noto da tempo. Nel 1968 l'allora Centro Studi Geotermici del CNR (ora IIRG) aveva perforato 4 pozzi della profondita inferiore a 150 m , ubicati in prossimita di manifestazioni termali, incontrando in uno di essi (Bagno dell'Acqua) acqua a $62^{\circ} \mathrm{C}$ con portata di $360 \mathrm{t} / \mathrm{h}$ (Barbier, 1969).

Negli ultimi anni l'isola è stato oggetto di esplorazione di superficie e di profondità da parte di Ente Minerario Siciliano e CESEN. La sintesi geotermica presentata di seguito è largamente basata sui dati raccolti nel corso del progetto geotermico EMS-CESEN, denominato "Valoren-Pantelleria". Nell'ambito di tale progetto, fra l'altro, sono stati perforati:

- quattro pozzi termometrici, denominati PT-1, PT-2, PT-3
e PT-4, la profondità dei quali è compresa fra 200 e 300
m,
- due pozzi profondi, chiamati PPT1 e PPT2.

Il pozzo PPT1, localizzato alle pendici meridionali di Monte Gibele, è penetrato, da 715 m a fondo pozzo (1100 m), in un corpo subvulcanico trachitico peralcalino scarsamente alterato. La temperatura estrapolata a fondo pozzo è di 286 ${ }^{\circ} \mathrm{C}$.
Il pozzo PPT2, ubicato alle pendici nord-occidentali di Monte Gelfiser, ha trovato una situazione termica meno interessante.

4.3.2. Vulcanologia

Pantelleria è cresciuta entro una rift continentale sommerso e l'isola è allungata in direzione NW-SE, ossia parallelamente all'asse di tale rift. A Pantelleria affiorano esclusivamente lave e depositi piroclastici di pantelleriti, trachiti e basalti alcalini, elencati in ordine di abbondanza decrescente.

Nel periodo compreso fra 320000 e 50000 anni fa si sono verificate almeno sei importanti eruzioni esplosive che possono avere determinato collassi calderici. Una caldera, denominata La Vecchia e formatasi attorno a 93000 anni fa, è stata identificata da Mahood and Hildreth (1983), vedi Fig. 4.3.1.

Circa 50000-55000 anni fa avvenne una importante eruzione piroclastica i cui depositi, il cosidetto tufo verde (composizionalmente variabile da pantellerite alla base a trachite al tettol, ammantarono tutta lisola. Contemporaneamente all'eruzione o poco dopo si verifico un collasso calderico, del diametro di circa 6 km , chiamato Cinque Denti (Mahood and Hildreth, 1983) o Monastero (Civetta et al., 1984).

Dopo un periodo di quiescenza, si formò, circa 35000 anni fa, il complesso vulcanico di Montagna Grande, la parte

Geotermica Italiana
 44

nord-occidentale del quale venne poi sollevata di circa 300 m nel corso dei successivi 20000 anni (Civetta et al., 1984).

Il settore nord-occidentale dell'isola venne poi interessato (Civetta et al., 1984):

- da attività basaltica fissurale, attorno ai 30000 anni fa,
- dalla messa in posto del duomo pantelleritico di Gelkamar, attorno ai 22000 anni fa.

Circa 16000 anni fa avvenne l'eruzione dei lower pantelleritic lava flows and domes, prevalentemente da bocche localizzate lungo il bordo della caldera Monastero (Civetta et al., 1984).

L'attività vulcanica avvenuta negli ultimi 10000 anni è stata fortemente condizionata dall'attivitazione di strutture vulcano-tettoniche legate al sollevamento di Montagna Grande, è stata di tipo prevalentemente esplosivo, e sono stati eruttati piú frequentemente prodotti pantelleritici e trachitici.

Come riconosciuto nel rapporto del progetto geotermico "Valoren-Pantelleria EMS-CESEN", i dati disponibili evidenziano l'esistenza, nel sottosuolo della parte centrale dell'isola, di una camera magmatica poco profonda (3-4 km), occupata da magmi pantelleritici nelle porzioni superiori e da magmi trachitici nelle parti inferiori; questa camera è stata attiva almeno fino 4000 anni fa ed il suo volume è stimabile in almeno $3-4 \mathrm{~km}^{3}$.

Questa camera magmatica è verosimilmente l'ultima di una serie di strutture di questo tipo, all'interno delle quali è avvenuta la residenza, per lunghi tempi, di magmi che si sono differenziati per cristallizzazione frazionata fino a produrre notevoli volumi di pantelleriti. Ciò garantisce l'esistenza di una importante anomalia termica nel sottosuolo dell'isola, peraltro confermata dalle misure di temperatura effettuate nel pozzo PPTI.

4.3.3. Gravimetria

L'interpretazione gravimetrica eseguita nell'ambito del progetto geotermico "Valoren-Pantelleria EMS-CESEN" (Fig. 4.3.2) porta ad identificare una serie di corpi ad alta densita lungo il bordo interno della caldera La Vecchia. Alla luce del risultato del pozzo PPT1, le cause di queste anomalie positive sembrano essere corpi subvulcanici similari a quello incontrato in questo pozzo, o gli accumuli di materiali di maggiore densità presumibilmente presenti sotto a tali corpi.

Fra le anomalie negative spicca quella di Montagna Grande, che potrebbe essere collegata, alternativamente:

- al sollevamento delle formazioni più antiche, che
dovrebbero avere densità minore di quelle più recenti,
- alla presenza di un intrusivo acido che potrebbe essere la causa del sollevamento dell'edificio.

Geotermica Italiana 45

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

4.3.4. Geochimica dei fluidi

Le acque termali dell'isola di Pantelleria sono state oggetto di investigazioni geochimiche da parte di Barbier et a1. (1969) e Dongarrà et al. (1983). Nel corso del progetto geotermico "Valoren-Pantelleria EMS-CESEN" sono stati raccolti numerosi dati chimici ed isotopici relativi sia alle acque termali e fredde dell'isola, sia alle manifestazioni gassose.

Nei seguenti paragrafi sono stati considerati solamente i dati idrogeochimici raccolti da EMS-CESEN nel marzo 1991, poichè costituiscono la serie più completa di dati di questo tipo, e quelli relativi ai pozzi termometrici, raccolti nel giugno 1992.

4.3.4.1. Classificazione chimica delle acque

Esaminando opportune sezioni della piramide composizionale di Langelier-Ludwig (Figg. 4.3.3 e 4.3.4), si osserva che la maggior parte delle acque dellisola ha composizione $\mathrm{Cl}-\mathrm{Na}$ e salinita ionica estremamente variabile, essendo compresa fra 15 e $1000 \mathrm{meq} / \mathrm{l}$, comunque inferiore a quella dell'acqua di mare (1100-1300 meq/l). Solamente tre campioni hanno il bicarbonato come anione prevalente:

- due (cisterna Favara e Tomba Fenicia) hanno composizione $\mathrm{HCO}_{3}-\mathrm{Ca}-\mathrm{Na}$, bassa salinità ionica (3 e 7 meq/l) e provengono dall'interno dell'isola;
- uno è rappresentativo del pozzo termometrico PT-2, ha composizione $\mathrm{HCO}_{3}-\mathrm{Na}$ e salinita ionica di $50 \mathrm{meq} / 1$.
Anche se le differenze composizionali all'interno del tipo Cl-Na sono relativamente limitate, esse sono di estremo interesse. In effetti, in Fig. 4.3.3, si puo osservare che alcuni campioni (per esempio, pozzi termometrici PT-3, PT-1 e PT-4, Nica e Grotta Nicà), caratterizzati da contenuti percentuali di Ca e Mg prossimi a 0 , sono verosimilmente rappresentativi di acque geotermiche. L'acqua di mare si localizza ben distante da queste, essendo caratterizzata da contenuti percentuali di $\mathrm{Ca}+\mathrm{Mg}$ maggiori e di $\mathrm{HCO}_{3}+\mathrm{SO}_{4}$ minori. Le caratteristiche degli altri campioni sono verosimilmente controllate dai seguenti processi:
- miscelamenti binari e ternario fra acque meteoriche,
acqua di mare e acqua geotermica, fra i quali è ben evidente, nel diagramma quadrangolare di Langelier-Ludwig (Fig. 4.3.3), lo spostamento verso il vertice del $\mathrm{HCO}_{3}-$ (SO_{4}) di $\mathrm{Ca}(\mathrm{Mg})$ determinato dall'aggiunta di acque meteoriche;
- aggiunta di CO_{2} e lisciviazione delle rocce che determina un aumento del contenuto percentuale di HCO_{3}; questo processo ha raggiunto proporzioni estreme nel caso del campione PT-2.
La precipitazione di calcite o aragonite, ed il conseguente allontanamento dal vertice del HCO_{3} di Ca , ha certamente avuto luogo nel caso del Lago Bagno dell'Acqua (o Specchio di Venere), come riconosciuto da Dongarrà et al. (1983), ma

Geotermica Italiana
 46

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
ha probabilmente una importanza minore o del tutto trascurabile per le altre acque dell'isola.

4.3.4.2. Distribuzione delle specie mobili

Fra le specie mobili, quelle di maggiore interesse in questo caso specifico sono il litio ed il cloruro, a causa del contrasto fra (Fig. 4.3.5):

- l'acqua geotermica, rappresentata dal campione del
pozzo PT-3, e caratterizzata da alto Li (circa $0.2 \mathrm{meq} / \mathrm{l}$)
e Cl intermedio (circa 120 meq/l);
- l'acqua di mare, che ha basso Li (circa 0.02-0.04
meq/l) ed alto Cl (circa 550-600 meq/l);
- le acque meteoriche caratterizzate da bassissimi Li e Cl.

Bisogna inoltre sottolineare il fatto che la interazione acqua-roccia in acque aggressive per apporto di PCO2 non causa una rilevante estrazione di Li dalle rocce; in effetti il contenuto di Li dell'acqua del pozzo PT-2 (che può essere considerata come il prodotto di un fenomeno di questo tipo, come già visto) è di $0.024 \mathrm{meq} / 1$ solamente.

L'esame del diagramma di correlazione Li vs Cl (Fig. 4.3.5) conferma il verificarsi di fenomeni di miscelamento binario acqua geotermica-acqua di mare e acqua geotermicaacque meteoriche e di miscelamento ternario acqua geotermica-acque meteoriche-acqua di mare. Solamente il punto rappresentativo del lago Bagno dell'Acqua si localizza al di fuori del triangolo composizionale definito da acqua geotermica, acque meteoriche ed acqua di mare, a causa della concentrazione per evaporazione che ha determinato un allontanamento del punto dall'origine degli assi; in origine l'acqua di questo lago poteva essere molto similare a quella della Buvira Rizzo o del Pozzo Policardo, localizzati in prossimità dello specchio d'acqua.

Le miscele più ricche della componente geotermica (Nicà, Grotta Nicà, pozzo PT-4, Buvira Rizzo, Pozzo Policardo, Gadir 1°, Sataria, Pozzo Aeroporto, Circolo Velico, Gadir, Buvira Gadir, pozzo Gadir e pozzo PT-1) si localizzano tutt'attorno alla caldera La Vecchia, mentre le miscela più povere di questa componente sono ubicate per lo più nel settore nord-occidentale dell'isola (Fig. 4.3.6). Partendo dal pressuposto semplice ma ragionevole secondo il quale, più l'acqua geotermica si allontana dal luogo di provenienza, più ha modo di miscelarsi con acque di altro tipo (principalmente con acque meteoriche), la distribuzione geografica delle miscele più o meno ricche dell'acqua geotermica suggerisce che essa proviene da un serbatoio localizzato nel sottosuolo della caldera La Vecchia o della caldera Monastero.

4.3.4.3. Geotermometria idrogeochimica

Le seguenti stime geotermometriche sono state ottenute per il campione più rappresentativo della componente geotermica (pozzo PT-3):

- $T_{N a / K}$ di $208{ }^{\circ} \mathrm{C}$, in base al geotermometro Na / K
(Fournier, 1979);
- Tquarzo di $162^{\circ} \mathrm{C}$, facendo riferimento alla solubilita del quarzo (Fournier and Potter, 1982);
- $\mathrm{T}_{\mathrm{K}}{ }^{2} / \mathrm{Mg}$ di $150{ }^{\circ} \mathrm{C}$, considerando il geotermometro $\mathrm{K}^{2} / \mathrm{Mg}$ (Giggenbach, 1988).
Il fatto che il geotermometro $\mathrm{K}^{2} / \mathrm{Mg}$ e la solubilita del quarzo forniscano stime confrontabili e decisamente inferiori alla $T_{N a / K}$ suggerisce che l'acqua del pozzo PT-3 provenga da un serbatoio secondario la cui temperatura è di 150-160 ${ }^{\circ} \mathrm{C}$, alimentato da un serbatoio principale la cui temperatura è di almeno $210{ }^{\circ} \mathrm{C}$.

E' interessante rimarcare il fatto che la temperatura del serbatoio secondario cade all'interno dell'intervallo termico (130-170 ${ }^{\circ} \mathrm{C}$) stimato da Dongarrà et al. (1983) applicando tecniche geotermometriche alle sorgenti termali dell'isola.

4.3.4.4. Distribuzione della P_{CO} e della temperatura

Tralasciando due campioni poco significativi perchè prossimi alla condizione di equilibrio con l'atmosfera (log $\mathrm{P}_{\mathrm{CO} 2 \text {, atmosfera }}=-3.5$), l'istogramma di Fig. 4.3.7 mostra che la PCO2 nelle acque di Pantelleria ha una distribuzione bimodale. Sono infatti distinguibili una famiglia normale, caratterizzata da $\mathrm{P}_{\mathrm{CO}}<100 \mathrm{mbar}$, ed una famiglia anomala, con PCo2 superiori a 250 mbar. Quest'ultima è costituita da alcuni delle miscele ricche della componente geotermica, più precisamente: Nicà, Grotta Nicà, Buvira Rizzo, Gadir 1°, Sataria, Pozzo Aeroporto, Gadir, e pozzo PT-1. Bisogna rilevare che il pozzo $P T-3$ ha sicuramente perso CO_{2} per ebollizione, fenomeno che probabilmente spiega la minore $P_{\text {CO2 }}$ delle altre miscele ricche della componente geotermica.

Prendendo in esame il diagramma di correlazione fra temperatura e litio (Fig. 4.3.8) si osserva che la termalità delle acque calde presenti nell'isola è spiegata dal miscelamento, prossimo ad un modello iso-entalpico, con acqua geotermica raffreddatasi a poco meno di $100{ }^{\circ} \mathrm{C}$.

Pertanto la distribuzione sia della PCO2 sia della temperatura indicano che nelle acque di Pantelleria non vi è nessuna evidenza né di ingresso di vapore elo gas provenienti da serbatoi geotermici sottostanti, né di riscaldamento per conduzione. Ciò porta a restringere la localizzazione del serbatoio geotermico all'interno dell'area delimitata dalle acque campionate.

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

4.3.4.5. Geochimica dei gas fumarolici

Un considerevole numero di emissioni di vapore ed alcune fumarole vere e proprie si incontrno nel centro dell'isola, più precisamente nella zona di Montagna Grande Monte Gibele - Favare (Fig. 4.3.6). La composizione di questi gas varia fra:

- un tipo costituito prevalentemente da CO_{2} ed
- un tipo dominato da N_{2} ed O_{2}, il cui rapporto non è molto differente da quello dell'aria (pari a 3.73); in questo secondo tipo la CO_{2} costituisce gran parte del resto delle miscele.
E' quindi ragionevole pensare che tutte queste manifestazioni siano alimentate più o meno direttamente da vapore geotermico tipicamente accompagnato da CO_{2}.

In tutte queste miscele $l^{\prime} \mathrm{H}_{2} \mathrm{~S}$ è presente in quantità non misurabili, tranne che al Passo del Vento, dove il contenuto di $\mathrm{H}_{2} \mathrm{~S}$ è comunque dello 0.0313% vol solamente. Nei gas ricchi di CO_{2} scaricati dal pozzo PT-3, invece, il contenuto di $\mathrm{H}_{2} \mathrm{~S}$ è decisamente superiore, raggiungendo il 4.1 \% vol. I bassi contenuti di $\mathrm{H}_{2} \mathrm{~S}$ delle manifestazioni naturali suggeriscono pertanto una forte interazione di questi gas con ambienti superficiali che li ha resi inadatti alla applicazione di tecniche geotermometriche.

Restringendo l'attenzione al campione del pozzo PT-3 e assumendo che i gas siano rappresentativi della condizione di equilibrio presumibilmente raggiunta nel serbatoio profondo da cui provengono, la temperatura di questo serbatoio è valutabile in $240^{\circ} \mathrm{C}$, ammettendo che in esso sia presente un monofase liquido.

4.3.4.6. Modello geochimico-geotermico concettuale

Nel loro insieme, i dati disponibili confermano la presenza, nel sottosuolo dell'isola di Pantelleria e più precisamente all'interno della caldera Monastero (o Cinque Denti), di un serbatoio geotermico principale, della temperatura di circa $240{ }^{\circ} \mathrm{C}$, entro il quale è ospitato un monofase liquido, il cui contenuto di cloruro è poco superiore ai $4000 \mathrm{mg} / \mathrm{kg}$.

Questo liquido geotermico si scarica alla superficie in vari punti prossimi alla costa dell'isola (Fig. 4.3.6), dopo essersi raffreddato e ri-equilibrato chimicamente entro uno o più serbatoi secondari (la cui temperatura è $\leq 160{ }^{\circ} \mathrm{C}$) e dopo essersi miscelato con acque meteoriche (preferenzialmente) e/o con acqua di mare. Fenomeni di ebollizione avvengono alla sommità del serbatoio principale, o di un serbatoio secondario situato grosso modo sulla sua verticale, ed i vapori separati alimentano le emissioni di vapore e le fumarole localizzate nella zona di Montagna Grande - Monte Gibele - Favare (Fig. 4.3.6).

ENEA

4.3.5. Valutazione delle riserve geotermiche

Per l'elevata temperatura (circa $240{ }^{\circ} \mathrm{C}$) e la modesta profondità il serbatoio geotermico di Pantelleria è classificabile come riserva geotermica di categoria A. Mentre è relativamente semplice valutare l'estensione areale (ed il volume) del serbatoio geotermico principale presente nel sottosuolo dell'isola, la stima della portata di fluido estraibile è pochissimo affidabile. In effetti, ammettendo che l'estensione areale delle manifestazioni a vapore coincida con quella del serbatoio geotermico principale, l'area sottesa da quest'ultimo è stimabile in circa $6.3 \mathrm{~km}^{2}$. Considerando che il tetto del serbatoio si localizzi attorno ai 450 m di profondita (profondità del tetto della zona propilitica nel pozzo PPT1), il suo spessore è valutabile in circa 2.55 km . Ne consegue un volume totale (roccia+acqua) di circa $16 \mathrm{~km}^{3}$. Pertanto si puo calcolare una portata estraibile di circa $640 \mathrm{t} / \mathrm{h}$, nell'ipotesi di un sistema a liquido dominante con permeabilita similare a quella dei campi geotermici esplorati in Italia.

Bisogna tuttavia sottolineare che il seroatoio geotermico di Pantelleria è ospitato entro uno o più corpi intrusivi, come indicato dai risultati del pozzo PPT1 e dai dati gravimetrici; questi corpi, per analogia con quanto osservato altrove (per esempio Zunil, Guatemala) sono generalmente permeabili unicamente lungo fratture a sviluppo prevalentemente verticale. E' pertanto molto improbabile che il serbatoio geotermico di Pantelleria abbia permeabilità confrontabile con quella dei campi geotermici esplorati in Italia, fatto che rende molto aleatoria la stima della portata estraibile.

Figure 1. Lithologic map of the island of Pantelleria (modified after Villari in Rittrann, 1967). 1: Recent sedimentary deposits; 2: Mursia basaltic lava flows and cinder cones: 3: Upper pantelleritic lava flows and domer; 4: pantelieritic domes and lava flows; 5 : Cuddia di Mida tephra: 6: Lower pantelteritic lava flows and domes: 7: Gelkhamar pantelleritic endogenous dome and lava fiows; 8: P. San Leonardo basaltic lava fows añd cinder cones:9: Mt. Gibele lava flows; 10: Montagna Grande dome: 11: Serra di Ghirlanda tephra; 12: green tuff: 13: volcanie units older than the green tuft.

Fig. 4.3.1. Mappa geologica schematica dell'Isola di Pantelleria (da Civetta et al., 1984 e Mahood and Hildreth, 1983).

Fig. 4.3.2. Carta delle anomalie di Bouger, densità $2.5 \mathrm{~g} / \mathrm{cm}^{3}$, elaborata nell'ambito del progetto geotermico "Valoren-Pantelleria EMS-CESEN".

$\underset{(\text { eq } \% \text {) }}{\text { Mat }}$
Fig. 4.3.3. Diagramma di Langelier-Ludwig per le acque di Pantelleria.
$\times 1.18$
${ }_{\mathrm{x}} \mathrm{x}$ acqua di mare

Fig. 4.3.4. Diagramma di correlazione Cl vs $\mathrm{HCO}_{3}+\mathrm{SO}_{4}$ per le acque di Pantelleria; questo grafico è equivalente ad una qualunque sezione (della piramide composizionale di Langelier-Ludwig) con traccia parallela all'asse delle ascisse nel diagramma di Fig. 4.3.3.

Fig. 4.3.5. Diagramma di correlazione Li vs Cl per le acque di Pantelleria.
1 (meq/1)

Fig. 4.3.6. Mappa geochimica dell'isola di Pantelleria. Spiegazione dei simboli:

- cerchi neri: miscele ricche della componente geotermica;
- cerchi bianco-neri: miscele povere della componente geotermica;
- cerchi bianchi: altre acque;
- quadrati neri: miscele ricche della componente geotermica incontrate dai pozzi termometrici;
- triangoli: emanazioni di vapore dal suolo e fumarole.

Fig. 4.3.7. Distribuzione di frequenza della PCOz nelle acque di Pantelleria.

L. il. (meq/l)

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

4. 4.

Graben sardo-campidanese

4.4.1. Cenni geologico-strutturali

Da un punto di vista geologico-strutturale molto semplificato, in Sardegna sono riconoscibili (Pala et al., 1982 a; Fig. 4.4.1):
(1) il graben sardo-campidanese, formatosi in età terziaria a partire dall'Oligocene, che si estende dal golfo dell'Asinara, a nord, al golfo di Cagliari, a sud; (2) l'horst orientale apparentemente omogeneo e continuo, dove affiorano prevalentemente i graniti e gli scisti del basamento paleozoico, a cui si sovrappongono localmente i litotipi calcareo-dolomitici di età mesozoica;
(3) l'horst occidentale, smembrato in una serie di blocchi, i principali dei quali sono quelli della Nurra, di Flumentorgiu, dell'Arburese-Iglesiente e del Sulcis. Il primo costituisce un blocco isolato alla estremita nord-occidentale della Sardegna, mentre gli altri tre sono separati da graben minori, ad andamento est-ovest, formatisi in eta terziaria; gli horst del sulcis e dell'Arburese-Iglesiente si differenziano dagli altri, essendo costituiti da un nucleo di terreni del Cambriano (arenarie, dolomie e calcari, argilliti), interessati da diversi episodi plicativi, sul quale sono sovrascorsi i terreni paleozoici post-caledoniani.
Il graben sardo-campidanese è riempito da una potente successione vulcanica e sedimentaria, il cui spessore massimo è valutabile in $2-3 \mathrm{~km}$; colmate vulcaniche e sedimentarie sono presenti anche nei graben minori.

Complessivamente queste sequenze vulcaniche e sedimentarie hanno permeabilità medio-bassa, se si escludono le facies conglomeratico-arenacee, le intercalazioni di calcari ed alcuni litotipi vulcanici, che possono essere sede di falde acquifere (Caboi et al., 1982; Caboi et al., 1988 a).

Il basamento granitico-scistoso si configura invece come un complesso relativamente omogeneo, privo di setti impermeabili a sviluppo orizzontale, nel quale le acque di infiltrazione possono discendere fino a ragguardevoli profondita e risalire poi alla superficie lungo zone intensamente fratturate (Pala et al., 1982 b).

4.4.2. Stato termico

Come è noto (e.g. Beccaluva et al., 1976-77), nel PlioPleistocene, la Sardegna è stata sede di attività vulcanica intraplacca a carattere prevalentemente fissurale, che non ha portato alla edificazione di vulcani centrali. Anche se la maggior parte delle rocce vulcaniche riferibili a questa attività è costituita da basalti (da basalti subalcalini a basaniti), litotipi intermedi ed acidi, prodotti principalmente per cristallizzazione frazionata, sono presenti in alcune aree quali:

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

- Montiferro: trachiti fonolitiche, trachiti, fonoliti, fonoliti peralcaline, fonoliti tefritiche e tefriti fonolitiche;
- Monte Arci: andesiti, daciti, rioliti e trachiti alcaline sovrassature.
L'attivita vulcanica plio-pleistocenica inizio circa 5 milioni di anni fa a Capo Ferrato (nel SE della Sardegna) e si diffuse ampiamente nell'isola fra circa 4 e 2 milioni di anni fa. I prodotti più giovani (età comprese fra 0.6 e 0.14 milioni di anni) sono rappresentati da alcuni centri eruttivi del Logudoro, dove l'attività consistette prevalentemente nell'emissione di basalti fissurali, da subalcalini ad alcalini.

Alla luce di ció, appare molto improbabile che nelle zone interessate da attivita vulcanica possano essere presenti oggi anomalie termiche riferibili ad essa poichè:

- sebbene il vulcanismo pliocenico si sia manifestato anche con l'emissione di prodotti evoluti, eventuali anomalie termiche sarebbero state ormai dissipate, a causa del lungo tempo trascorso;
- sebbene il vulcanismo quaternario sia relativamente recente, il tipo di attività esclude che si siano verificati stazionamenti di magmi a scarsa profondita, tali da creare anomalie termiche di interesse.

L'estrapolazione delle determinazioni termometriche effettuate in pozzi di profondita inferiore ai 200 m (Loddo et al., 1982) e le poche misure eseguite in pozzi profondi (nei pressi di Casteldoria ed Oristano e nel golfo di Cagliari) suggeriscono che l'intero graben sardo-campidanese sia sede di una debole anomalia termica (gradiente di circa $40{ }^{\circ} \mathrm{C} / \mathrm{km}$) con due massimi localizzati uno nel Logudoro, l'alro nel Campidano, dove sono state stimate, a 1000 m di profondita, temperature prossime a 90 e $100{ }^{\circ} \mathrm{C}$, rispettivamente (Caboi et al., 1988 a).

Coerentemente con questo quadro, la maggior parte delle sorgenti termali riconosciute in Sardegna sono localizzate ai bordi del graben sardo-campidanese, lungo le faglie bordiere o altre faglie distensive che agiscono come via di risalita delle acque termali (Dettori et al., 1982; Caboi et al., 1986).

4.4.3. Circolazione dei fluidi termali

Le acque termali della Sardegna sono caratterizzate da bassi contenuti di solfato, poichè i depositi evaporitici hanno generalmente limitati spessore ed estensione; conseguentemente le caratteristiche chimiche delle acque termali variano, in genere, fra le composizioni ci-Na e $\mathrm{HCO}_{3}-\mathrm{Na} \circ \mathrm{HCO}_{3}-\mathrm{Ca}$ (Dettori et al., 1982; Caboi et al., 1986). In effetti sono stati riconosciut i seguenti tipi idrogeochimici.

Acque Cl-Na di bassa salinita (< $0.7 \mathrm{~g} / \mathrm{l})$ e pH elevato (prossimo a $9-10$), nella valle del Tirso ($\mathrm{T}_{\max } 55{ }^{\circ} \mathrm{C}$; sorgenti 15, 16, 17 in Fig. 4.4.1); queste sono state

Geotermica Italiana

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

interpretate come acque meteoriche che interagiscono con rocce del basamento in condizioni di bassa P_{CO} (Caboi et al., 1989).

Acque $\mathrm{HCO}_{3}-\mathrm{Na}$ di alta salinità (tipicamente da 1 a 3.5 g / I) e pH debolmente acido, nel Campidano (Tmax $60{ }^{\circ} \mathrm{C}$; sorgenti 18, 19, 20 in Fig. 4.4.1) e nel Logudoro ($T_{\max } 24$ ${ }^{\circ} \mathrm{C}$; sorgenti $7,8,9,10$ e 12). Esse sono state interpretate come acque meteoriche che interagiscono con rocce del basamento (sorgenti del Campidano) o con vulcaniti oligomioceniche (sorgenti del Logudoro), ma in condizioni di alta PCO2 (Caboi et al., 1986; Caboi et al., 1993).

Acque Cl-Na di alta salinità (diversi g/l). Nel caso delle sorgenti di Casteldoria ($\mathrm{T}_{\max } 76^{\circ} \mathrm{C}$; sorgente 1 in Fig. 4.4.1) è possibile ipotizzare : (1) una ricarica non solo meteorica ma anche parzialmente marina (10-15\%) ed una circolazione profonda prevalentemente nei graniti, o alternativamente, (2) una ricarica esclusivamente meteorica e un tempo di circolazione molto lungo in ambiente granitico (Caboi et al., 1988 b).

Acque $\mathrm{HCO}_{3}-\mathrm{Ca}$ di bassa salinita ($<0.5 \mathrm{~g} / \mathrm{l}$), nel sulcis (esempio Perdu Spada, $\mathrm{T}_{\max } 30^{\circ} \mathrm{C}$; numero 32 in Fig. 4.4.1) e nel Nuorese (esempio Su Banzu, $\mathrm{T}_{\max } 30^{\circ} \mathrm{C}$; numero 14 in Fig . 4.4.1); si tratta di acque meteoriche che hanno interagito con rocce carbonatiche paleozoiche o mesozoiche (caboi et al., 1986).

A causa della assenza di fonti di calore localizzate a debole profondita, per spiegare la termalità di tutte le sorgenti termali della Sardegna è ragionevole ipotizzare:

- una infiltrazione a notevole profondità, necessaria perchè le acque possano acquisire calore dalle rocce;
- una successiva risalita (lungo faglie distensive)
sufficientemente rapida affinchè le acque non si riequilibrano termicamente.
In particolare, per il graben del Campidano, il confronto fra le stime geotermometriche relative alle acque termali ed i dati di gradiente geotermico suggerisce che le acque si infiltrino fino a profondita di circa 1 km nel lato ovest e oltre i 2 km nel lato est (Bertorino et al., 1982 b).

4.4.4. Distribuzione della PCO2 nelle acque del Campidano

A causa del tipo di circolazione idrica che caratterizza i sistemi termali sardi, i serbatoi geotermici possono essere assimilati, a fini pratici, con le zone di faglia lungo le quali avviene la risalita delle acque termali. Anche se non si puo escludere a priori che l'acqua proveniente dal profondo possa localmente invaciere i litotipi più permeabili e più prossimi alla superficie, è improbabile che queste possibili zone invase dalle acque termali si allontanino molto dalle zone di faglia. A causa della limitata estensione di questi serbatoi cosi atipici, è improbabile che la metodologia di delimitazione dei serbatoi geotermici basata sulla distribuzione della P_{CO} nelle acque

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

di circolazione poco profonda fornisca risultati apprezzabili per i sistemi termali sardi, a meno di non disporre di dati di estremo dettaglio.

Per i 13 campioni di acque termali ed i 35 campioni di acque fredde del Campidano (Bertorino et al., 1982 a) è stata calcolata la PCO2, la cui distribuzione di frequenza (Fig. 4.4.2) ha andamento unimodale. I campioni con valori di P_{CO} più elevati di quelli della classe più rappresentata sono stati considerati anomali e sono stati suddivisi in due gruppi, uno con $P_{\text {Co2 }}$ compresa fra 32 e 100 mbar, l'altro con $P_{\text {CO2 }}$ nell'intervallo 100-320 mbar. Questi valori anomali di $P_{C O 2}, ~ l a ~ c u i ~ d i s t r i b u z i o n e ~ g e o g r a f i c a ~ e ̀ ~ p r e s e n t a t a ~ i n ~ F i g . ~$ 4.4.3, sono presenti unicamente nelle acque termali. Pertanto appare probabile che la CO_{2} sia addizionata a tali acque in profondita e che le accompagni poi nella loro risalita. Questi alti valori di $P_{C O 2}$ non sono legati quindi a fuoriuscite di gas da acquiferi geotermici, come riconosciuto nella regione tosco-laziale.

Come già accennato più sopra, per tentare di delimitare i serbatoi geotermici per faglia che caratterizzano il graben sardo-campidanese sarebbe necessario elaborare dati di estremo dettaglio, relativi al flusso di gas dal suolo, che al momento non sono disponibili.

Geotermica Italiana

Fig. 4.4.1. Schema geologico-strutturale ed ubicazione delle sorgenti termali della Sardegna (Dettori et al., 1982).

1. Basamento granitico-scistoso paleozoico.
2. Calcari e dolomie cambriane.
3. Calcari e dolomie mesozoiche.
4. Vulcaniti e sedimenti terziari e quaternari.
5. Principali centri eruttivi quatemari.
6. Faglie principali.

Fig. 4.4.2. Distribuzione di frequenza della PcOz nelle acque del Campidano.

Fig. 4.4.3. Distribuzione geografica della PcO2 nelle acque del Campidano.

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

5. APPLICAZIONE DEL MODELLO DI RAFFREDDAMENTO CONDUTTIVO DI CAMERE MAGMATICHE.

5.1. Generalita

Ia possibile distribuzione delle temperature in profondità all'intorno di una camera magmatica definita è stata calcolata, mediante un modello di raffreddamento conduttivo perfetto, per i seguenti apparati vulcanici: Monte Guardia e Monte Pilato, entrambi localizzati nell'isola di Lipari, Campi Flegrei e Vesuvio. Tutti questi vulcani sono caratterizzati dalla messa in posto di una o più camere magmatiche recenti, la cui età è inferiore a 0.1 milioni di anni, entro le quali si sono verificati processi di stazionamento e differenziazione di magmi. La scelta di queste aree è stata dettata dalla disponibilita delle informazioni necessarie per vincolare il modello, vale a dire il volume, la forma, la profondita e la temperatura iniziale della camera magmatica (di cui si è già detto nel paragrafo 2.4.1) ed il tempo di raffreddamento.

Per poter affrontare la valutazione del tempo di raffreddamento, ossia l'intervallo di tempo che intercorre fra il momento del riempimento della camera magmatica ed il momento del suo svuotamento (eruzione) o il tempo presente, bisogna ricordare che le camere magmatiche possono comportarsi come sistemi aperti o chiusi. I sistemi aperti sono quelli che vengono riempiti dopo ogni eruzione; in alcuni di questi sistemi l'apporto di nuovo magma è proprio il fattore che causa l'eruzione. I sistemi chiusi sono quelli che non ricevono apporto di nuovo magma e possono eruttare di tanto in tanto per altre cause.

E' evidente che mentre l'età di una eruzione può essere determinata applicando metodi geocronologici assoluti sui suoi prodotti, l'eta del riempimento non è altrettanto facilmente definibile, specie nel caso dei sistemi chiusi. Pertanto, nel caso di sistemi chiusi, sono stati ricostruiti i fenomeni di raffreddamento della camera magmatica fra eruzioni (svuotamenti parziali) successive invece che a partire dal momento in cui tale camera magmatica si è formata. Nel caso dei sistemi aperti è stato ipotizzato che l'eta della eruzione precedente sia rappresentativa del riempimento della camera magmatica che ha causato l'eruzione successiva; conseguentemente il tempo di raffreddamento a cui si fa riferimento è quello massimo.

In altri termini, si è cercato di seguire, per quanto possibile, la storia del vulcano applicando ripetutamente (a cascata) il modello, usando cioè i dati di uscita di ogni passo per vincolare quello seguente. Per eseguire rigorosamente questo trasferimento di memoria bisognerebbe considerare la distribuzione della temperatura nello spazio (dato di output del primo modello) come dato di input del secondo e cosi via. Poichè il modello utilizzato accetta, come dato di input, il flusso geotermico medio della zona, si è necessariamente operato in questa maniera:

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

- nel primo modello è stato inserito un valore del flusso geotermico arbitrario, comunque suggerito dal contesto geo-vulcanologico;
- in ogni modello successivo è stato inserito il flusso geotermico calcolato in base al gradiente geotermico sulla verticale del limite esterno della camera magmatica (dato di output del modello precedente) ed alla conduttivita termica.
I dati di input inseriti nel modello nei vari casi considerati sono elencati in Tabella 5.1, dove:
- L è la lunghezza dello spigolo della camera magmatica, considerata di forma cubica in tutti i casi;
- H_{1} è la profondita del tetto della camera magmatica;
- H_{2} è la profondità del letto della camera magmatica;
- Tmgm è la temperatura del magma al momento in cui esso entra nella camera; per le camere magmatiche chiuse si è considerato che la temperatura diminuisce nel tempo, mentre per le camere magmatiche aperte si è ammesso che esse siano via via riempite dallo stesso magma basico con la stessa temperatura;
- F_{t} e t sono il flusso geotermico medio della zona ed il tempo di raffreddamento, rispettivamente, gia commentati in precedenza.
Gli altri parametri utilizzati dal modello sono:
- la diffusivita termica, D_{t}, e la conduttività termica, C_{t}; è stato considerato che sia nel magma sia nelle rocce circostanti questi parametri siano similari, inserendo valori di $D_{t}=10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ e $C_{t}=2.3 \mathrm{~W} / \mathrm{m} \mathrm{K}$, in ogni caso;
- la temperatura di superficie, che è stata considerata di $18-20^{\circ} \mathrm{C}$.

5.2. Lipari

L'applicazione del modello di raffreddamento conduttivo di camere magmatiche ai vulcani Monte Guardia e Monte Pilato di Lipari è stata oggetto di una tesi di laurea della Università di Pisa (Fagioli, 1981), che è stata presa come punto di partenza e di confronto, ed alla quale si rimanda per ulteriori dettagli. Occorre ricordare che, nell'applicare questo modello, si assume che le rioliti sia di Monte Guardia che di Monte Pilato sono i prodotti finali della cristallizzazione frazionata di magmi shoshonitici, anche se questa interpretazione non è universalmente accettata in letteratura (vedi paragrafo 4.1.1).

Nel caso del Monte Guardia sono state calcolate le distribuzioni di temperatura che esistevano 25000 e 15000 anni fa (Tabelle 5.2 e 5.3 , rispettivamente) e quella attuale (Tabella 5.4). Prendendo in considerazione quest'ultima si può osservare che l'innalzamento della temperatura sulla verticale della camera magmatica, rispetto ai valori regionali, è di $34{ }^{\circ} \mathrm{C}$ a $3000 \mathrm{~m}, ~ 6{ }^{\circ} \mathrm{C}$ a 2000 m , e 0 ${ }^{\circ} \mathrm{C}$ a 1000 m di profondita.

Nel caso di Monte Pilato sono state ricostruite le distribuzioni di temperatura che si riferiscono a 10000 anni fa (Tabella 5.5) e a oggi (Tabella 5.6). In quest'ultima

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
tabella si osserva che l'aumento di temperatura sulla verticale della camera magmatica, relativamente ai valori regionali, è di $42^{\circ} \mathrm{C}$ a $3000 \mathrm{~m}, 4{ }^{\circ} \mathrm{C}$ a 2000 m e $0^{\circ} \mathrm{C}$ a 1000 m di profondità.

In ambedue i casi si tratta quindi di riscaldamenti abbastanza modesti e di limitata estensione. Questi risultati confermano che nel sottosuolo sia del Monte Guardia sia del Monte Pilato, per lo meno entro i $2-2.5 \mathrm{~km}$ di profondita, non si sarebbero create condizioni termiche atte all'instaurarsi di un sistema geotermico di alta entalpia, anche se la circolazione convettiva idrotermale può rendere il trasferimento di calore molto più efficente di quello puramente conduttivo.

Cio è in accordo sostanziale con il modello geochimicogeotermico concettuale dell'isola di Lipari (vedi paragrafo 4.1.2.6), secondo il quale un sistema geotermico poco profondo di alta entalpia è invece presente nel sottosuolo della costa occidentale e della fascia Bagni di San Calogero-Lipari.

5.3. Campi Flegrei

L'eruzione più importante che ha interessato l'area flegrea avvenne circa 35,000 anni fa e consistette nell'emissione di una ignimbrite alcali-trachitica (nota come Ignimbrite Campana, Barberi et al., 1978), con un volume di liquido equivalente pari a $80 \mathrm{~km}^{3}$ (Thunell et al., 1978). Questo liquido sarebbe stato prodotto per cristallizzazione frazionata a partire da un liquido trachibasaltico, entro una camera magmatica enorme, il cui volume iniziale era di almeno $240 \mathrm{~km}^{3}$ (Armienti et al., 1983). Non essendo possibile valutare il momento in cui si formo tale camera magmatica, il modello è stato applicato solamente agli ultimi 10500 anni. Per questo periodo di tempo, durante il quale la camera magmatica flegrea si è probabilmente comportata come un sistema chiuso (Armienti et al., 1983), vi è una buona conoscenza della storia vulcanica (Rosi et al., 1983) e sono disponibili i dati vulcanologici e petrologici necessari per il modello (Armienti et al., 1983; 1984).

Per tenere conto dell'effetto termico della camera magmatica che erutto l'Ignimbrite Campana, è stato aroitrariamente assunto che 10500 anni fa esistesse gia una considerevole anomalia termica regionale. Nel modello è stato pertanto introdotto un flusso geotermico iniziale di $0.228 \mathrm{~W} / \mathrm{m}^{2}$, pari ad un gradiente geotermico $\mathrm{di} 99{ }^{\circ} \mathrm{C} / \mathrm{km}$, ossia 3 volte il normale.

I risultati del modello indicano che il raffreddamento della camera magmatica negli intervalli di tempo compresi fra 10500 e 3000 anni fa (Tabella 5.7) e fra 3000 anni fa ed oggi (Tabella 5.8) non è stato in grado di alterare significativamente l'elevato flusso termico presumibilmente già presente.

I dati di output relativi al tempo presente sono abbastanza ragionevoli, anche se le temperature incontrate

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

dai pozzi di Mofete, San Vito ed Agnano sono sensibilmente maggiori di quelle fornite dal modello. Questo importante innalzamento delle isoterme (rispetto al modello) è verosimilmente imputabile alla circolazione convettiva idrotermale, che puo rendere il trasferimento di calore molto più efficace di quello che si verifica in un regime puramente conduttivo.

5.4. Vesuvio

Per il Vesuvio sono disponibili delle buone valutazioni dei volumi delle camere magmatiche che hanno originato le eruzioni di Mercato (7900 anni fa), Avellino (3800 anni fa), Pompei (79 AD) e di quelle avvenute nel 472 AD e nel 1631 AD (Barberi et al., 1981; Rosi et al., 1987; 1993). La buona correlazione fra il logaritmo del volume delle camere magmatiche ($V_{c m}$ in km^{3}) ed il logaritmo del tempo di residenza del magma (t in anni) entro tali serbatoi (Rosi et al., 1987) è descritta dalla equazione seguente:
$\log V_{c m}=1.057 \log t-2.901 \quad\left(R^{2}=0.975\right)$
che è stata usata per calcolare i volumi delle camere magmatiche delle eruzioni avvenute nel 203 AD e nel 1139 AD e della camera magmatica presumibilmente presente oggi.

Lo stato termico relativo a vari momenti della storia del Vesuvio è riportato nelle Tabelle da 5.9 a 5.16., dal cui esame si osserva che, mentre le camere magmatiche attive negli intervalli di tempo compresi fra 11400 e 7900 e fra 7900 e 3800 anni fa hanno modificato il flusso geotermico nel loro intorno, i serbatoi messisi in posto in epoche più recenti non sono stati in grado di provocare effetti similari, verosimilmente per la loro dimensione minore.

La distribuzione delle temperature fornita dal modello per il tempo presente si discosta significativamente dalle temperature incontrate nel pozzo Trecase 1 (ubicato circa 4 km a SE del cratere): $47^{\circ} \mathrm{C}$ a 1650 m e $51^{\circ} \mathrm{C}$ a 2072 m di profondità (Balducci et al., 1983); questi valori sono in effetti molto minori di quelli previsti dal modello. Ciò è probabilmente dovuto al fatto che il modello non tiene conto del rilevante flusso idrico freddo che investe l'area vesuviana provenendo dai rilievi calcarei circostanti.

5.5. Osservazioni conclusive

Il modello di raffreddamento conduttivo di camere magmatiche è un utile strumento di lavoro perchè fornisce una distribuzione di temperature che costituisce un utile riferimento ipotetico con il quale confrontare i dati termici reali. Le differenze eventualmente rilevate sono in genere attribuibili al ruolo del flusso idrico, idrotermale
freddo, e permettono di stabilire qualitativamente l'importanza di questo o quel fenomeno.

Non si tratta comunque di un metodo di valutazione del potenziale geotermico.

	Vulcano	da (anni fa)	a (anni fa)	L (m)	H1 (m)	H2 (m)	Trmgm (K)	Ft (W/m2)	t (anni)
1	Lipari (M.Guardia)	40,000	25,000	1210	3790	5000	1373	. 125	15000
2	Lipari (M.Guardia)	25,000	15,000	1210	3790	5000	1373	. 156	10000
3	Lipari (M.Guardia)	15,000	oggi	1210	3790	5000	1373	. 184	15000
4	Lipari (M.Pilato)	15,000	10,000	900	4100	5000	1373	. 156	5000
5	Lipari (M.Pilato)	10,000	oggi	1210	3790	5000	1373	. 159	10000
6	Campi Flegrei	10,500	3,000	2410	4090	6500	1473	. 228	7500
7	Campi Flegrei	3,000	oggi	2120	4280	6400	1423	. 242	3000
8	Vesuvio (Mercato)	11,400	7,900	1910	3090	5000	1473	. 156	3500
9	Vesuvio (Avellino)	7,900	3,800	1870	3130	5000	1473	. 166	4100
10	Vesuvio (79 AD)	3,800	1,914	1430	3570	5000	1473	. 179	1886
11	Vesuvio (203 AD)	1,914	1,790	580	4420	5000	1473	. 179	124
12	Vesuvio (472 AD)	1,790	1,521	740	4260	5000	1473	. 179	269
13	Vesuvio (1139 AD)	1,521	854	1070	3930	5000	1473	. 179	667
14	Vesuvio (1631 AD)	854	362	580	4420	5000	1473	. 179	492
15	vesuvio	362	oggi	860	4140	5000	1473	. 179	362

[^3]| | 18 | 16 | 13 | 13 | 15 | 18 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 19 | 18 | 19 | | 18 | | 18 | | |
| :---: |
| 200 | 29 | 2f | 9 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 99 | 29 | $2 ?$ | 29 | 29 | 27 | 98 | 29 | 29 | |
| | 40 | 4 | 40 | 40 | 4 | 40 | 40 | 40 | 40 | 46 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 0 | 40 | | 40 | 40 | \% | |
| | 50 | 90 | 5 | 5 | 50 | 50 | | 50 | | 5 | | 50 | 50 | | 5 | | 5 | \% | 0 | | 5 | | | | |
| | 1 | 1 | 61 | 61 | 6 | | | 61 | S. | 61 | | 61 | 61 | 1 | 61 | | bi | 61 | | | | 62 | | 6 | |
| 000 | 72 | 72 | 7 | | 72 | 72 | | 72 | 72 | 72 | | 72 | | 2 | 72 | 2 | 72 | 7 | 72 | 72 | 72 | 73 | | 73 | |
| 120 | 8 | E | E | | E | 83 | | 33 | 83 | E | Es | 83 | 85 | 3 | 83 | 83 | 83 | 63 | 83 | 83 | 89 | A | 8 | 84 | |
| 1400 | 94 | 94 | 94 | 9 | 94 | 94 | 9 | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 95 | 9 | 95 | 95 | 95 | |
| 1600 | 105 | 105 | 105 | 10 | 105 | 105 | 105 | 105 | 105 | 105 | 125 | 105 | 105 | 105 | 105 | 105 | 105 | 105 | 106 | 106 | 1 cc | 107 | 107 | 107 | 10 |
| 1200 | $1: 1$ | 18 | 11 | $1: 16$ | $1:$ | 11 | 116 | 116 | is | 116 | 116 | H: | 116 | 116 | 116 | 116 | 115 | $1: 7$ | 117 | $1: 8$ | $1: 9$ | 1:9 | 119 | 120 | 12 |
| | 127 | :27 | :27 | :27 | 127 | 127 | 12: | 127 | 177 | 127 | 12 | 127 | 127 | 127 | 12 | 12 | 128 | 128 | 129 | 130 | 1 N | 2 | 3 | 13 | |
| 220 | :27 | :7 | :73 | 137 | 13 | : 37 | 137 | 13 | 15 | 157 | 87 | 13 | 138 | 38 | 136 | :3 | 139 | 140 | 14. | 142 | 14. | 45 | 197 | 47 | 14 |
| 2400 | 14 E | 148 | 148 | 148 | 142 | 148 | 148 | 148 | 148 | $14{ }^{\text {a }}$ | 148 | 148 | 149 | 149 | 147 | 150 | 151 | 152 | 154 | : 5 | :53 | 16 | 152 | 163 | 16 |
| 2506 | 159 | :5 | : | :59 | 159 | 159 | :59 | 159 | 159 | 159 | 15 | 159 | 159 | 16 | 16 | 161 | 162 | 15 | 167 | 169 | 17 | . 75 | 178 | 180 | 18 |
| | 170 | 170 | 170 | 170 | 270 | 170 | 170 | 170 | 170 | 170 | 170 | 170 | 170 | 171 | 172 | 173 | 174 | 177 | 199 | 184 | 188 | 192 | 195 | 198 | 19 |
| | 19: | 131 | $19:$ | 181 | 181 | 181 | 181 | 18: | 18 | 181 | 191 | 181 | 181 | 192 | 18 | 184 | 187 | 190 | 194 | 199 | 205 | 210 | 214 | 217 | 21 |
| | 192 | 132 | 192 | 192 | 192 | 19 | 192 | 192 | ¢92 | 192 | :92 | 192 | 192 | 193 | 194 | 195 | 197 | 203 | 208 | 215 | 222 | 228 | 234 | 238 | 23 |
| | 20 | 20. | 203 | 2 | 20 | 203 | 203 | 263 | 203 | 2 | 203 | 203 | 20 | 204 | 20 | 208 | 21 | 2 | 225 | 230 | 2 | 24 | 254 | 258 | |
| 360 | $2: 4$ | 214 | 214 | 21 | 214 | 214 | 214 | 21 | 214 | 219 | 214 | 214 | 214 | 215 | 21 | 220 | 22 | 23 | 227 | 24 | 25 | 26 | 273 | 278 | |
| | 22 | 22 | 224 | 22 | 22 | 22 | 224 | 224 | 22 | 22 | - | 22 | 22 | 22 | 22 | | 23 | 242 | 25 | 251 | 27 | 282 | 291 | 297 | |
| 409 | 25 | 25 | 25 | $2: 5$ | 235 | 25 | 25 | 2 | + | 25 | 2 | 2 2t | 2s | 23 | 24 | 24 | 2 | *s | 264 | 2 | 2 | 298 | ¢0 | 314 | |
| \$200 | 246 | 245 | 24 | 245 | 246 | 245 | 24 | 246 | 245 | 24 | 246 | 24 | 247 | 249 | 251 | 254 | 259 | 266 | 276 | 227 | 29 | 312 | 322 | 29 | |
| 440 | 257 | 25 | 251 | 25 | 257 | 257 | 25 | 257 | 257 | 25 | 257 | 258 | 258 | 259 | 252 | 225 | 230 | 277 | 287 | 298 | 311 | 32 | 35 | 340 | |
| 4500 | 268 | 255 | 268 | 263 | 253 | 268 | 258 | 23 | 258 | 268 | 265 | 238 | 269 | 270 | 272 | 276 | 291 | 299 | 297 | 308 | 32. | 331 | 341 | 348 | |
| 4800 | 277 | 27 | 279 | 279 | 279 | 279 | 279 | 27 | (19 | 2 | 27\% | 2.9 | 2 O | $28:$ | 2ES | 2 Eb | 291 | 29 | 306 | , | 327 | 3 | | - | |
| 5000 | 290 | 290 | 290 | 299 | 290 | 270 | 290 | 290 | 290 | 290 | 270 | 270 | 291 | 292 | 29: | 2\% | | 305 | | | 353 | 345 | | 3573 | |

[^4]Tab. 5.2. Distribuzione della temperatura nel sottosuolo di Lipari-Monte Guardia, relativa a 25000 anni fa, calcolata mediante il modello di raffreddamento conduttivo di camere magmatiche. La prima colonna (a sinistra) si riferisce alle profondita (in metri), mentre l'uttima riga (in basso) si riferisce alle distanze orizzontali (in metri) rispetto all'asse della camera magmatica.

	I	5	13	:	12	15	18	18	18	19	18	19	18	15	19	15	13	!	!	d	\%	15	?	18
m	3		$3:$	*	31	31	3	3	\cdots	31	3	31	31	3:	$3!$	3	\%	3:	:	3	\cdots	:	S	3
40	45	4	\%	45	45	45	45	45	45	45	4	45	45	45	45	45	\%	45	45	5	45	45	45	45
¢ 0	=	5	59	沉	5	5	59	59	59	59	59	59	59	59	59	S	59	59	59	59	59	5	5	59
300	72	72	72	7	72	72	72	72	32	72	72	72	72	22	72	72	72	72	72	72	I2	72	72	72
100	8	8	36	88	8 c	4	13	8 s	8	86	85	86	86	86	ε :	86	86	8	8	82	ε	c	66	86
1200	9	\%9	จ?	9	ต9	9	99	99	99	99	99	99	99	99	99	97	99	9	99	99	99	99	99	9
1400	123	12	1 S	15	12	15	12	13	113	113	113	13	113	115	113	113	113	13	113	$1: 3$	113	3	:	13
! 500	128	:25	12	126	126	126	126	12\%	126	126	126	126	12s	12 s	126	126	126	126	127	127	127	27	A	127
1000	149	140	140	140	140	140	100	140	148	150	140	140	140	140	140	140	140	140	140	41	14:	14:	141	142
2000	15	154	15	154	154	154	154	194	154	154	154	154	154	154	154	154	154	154	154	155	185	155	156	57
220	157	167	1 k ?	157	167	167	167	167	167	167	¢ 2	: 7	167	167	167	167	168	168	169	169	170	172	173	73
240	181	151	181	:3!	$19:$	181	181	191	191	181	18:	121	181	181	191	181	181	182	193	195	198	199	190	191
2000	194	196	199	144	194	174	154	194	194	194	154	194	194	194	194	195	195	197	198	201	20.	207	$2: 0$	212
2500	209	203	26s	20	208	208	203	203	208	$20:$	208	208	20	208	209	209	210	212	21	219	222	227	252	235
300	$22:$	22	22	22	22:	221	$22:$	221	22	O2	221	221	221	22	222	223	224	227	231	2	243	250	257	261
320	225	28	205	235	235	255	235	235	285	235	255	235	235	235	23:	237	239	243	248	256	265	275	284	290
3	248	24	248	248	24 B	248	24	248	2 E	248	278	249	249	249	250	22^{2}	254	258	266	276	288	301	315	321
36	$25 ?$	28	252	252	252	262	26	242	262	262	262	262	262	263	263	255	25:	274	283	298	311	327	342	352
3300	275	278	276	276	276	276	276	276	276	276	276	276	276	276	277	279	25:	270	301	31	33	355	330	382
4000	299	2\%	299	299	299	289	2 F	299	299	299	289	299	289	290	291	293	298	3 zu	:	334	354	375	395	9,
-200	303	35	30	30.	30	30.	30.	33	303	303	303	303	303	304	305	W	312	320	20.	350	371	394	415	38
440	36	31.	315	St	315	E:	316	312	31.	316	$3: 1$	316	317	317	318	321	326	334	347	Es	285	408	429	44
460	350	35	30	350	32	330	330	330	330	330	330	330	350	331	332	334	339	347	35	375	20	418	438	52
4000	345	343	3	34	2.3	325	343	343	34	343	343	348	344	344	335	347	352	359	370	385	40	423	442	454
300	357	35	357	V	3 y	357	357	357	35	35	357	357	357	358	359	360	369	370	336	39	409	4:	441	452

Tab. 5.3. Distribuzione della temperatura nel sottosuolo di Lipari-Monte Guardia, relativa 15000 anni ta, calcolata mediante il modello di raffreddamento conduttivo di camer magmatiche. La prima colonna (a sinistra) si riferisce alle profondità (in metri), menti l'ultima riga (in basso) si riferisce alle distanze orizzontali (in metri) rispetto all'asse dell camera magmatica.

	15	13	15	13	18	12	18	18	18	18	15	18	15	19	18	18	18	18	15	13	S	16	18	18	
D	3	3		34	34	34	34	34	34	\%	34	34	34	34	34	34	34	34	34	34	\%	3	3	34	
	5	to	5	50	50	50	50	50	5	5	50	50	50	50	50	5	50	50	50	50	5	56	50	50	
	5	60	6	46	65	66	$6 E$		66	66	66	66	6	66	66	65	66	66	66	6	6	S	6		
80	8	82	52	82	E2	82	82	82	82	82	82	82	82	82	82	82	82	32	2	2	2	2	2	12	
900	98	93	99	95	98	98	99	98	98	95	98	98	98	98	98	98	98	98	98	98	93	98	98	98	9
120	14	:14	15	114	11	14	14	114	114	14	114	114	114	114	114	114	114	114	114	14	114	14	15	115	11
1400	:30	150	150	130	130	130	150	130	130	130	130	130	130	130	130	130	130	130	130	13	15	131	131	131	5
1000	:45	146	146	146	146	146	146	146	146	141	146	146	146	146	146	146	146	146	147	147	147	148	148	148	4
1300	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	162	163	153	16	154	165	185	166	13
2000	178	178	175	178	17	178	178	178	178	179	178	178	178	17	179	174	17	179	180	181	182	163	184	184	19
2200	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	195	195	196	197	179	200	201	202	203	20
	21	210	210	210	210	210	210	210	210	210	210	210	210	210	211	211	212	213	215	21	29	221	222	22	2
\%	22	223	225	225	225	226	226	225	226	225	226	226	226	226	227	228	229	231	23	235	238	24	243	245	24
20	24	242	24	242	242	242	242	24	242	24	242	242	242	243	24	244	24	248	251	25	259	262	266	268	261
	25	253	259		258	258	258	258	258	258	258	258	258	259	250	261	263	26	278	275	280	284	289	291	2?:
	274	27	274	274	274	274	274	274	27	27	274	274	274	275	276	278	28	28	269	295	301	307	312	16	1
,	270	290	298	290	29	290	290	290	290	290	290	290	291	291	29.	295	298	302	308	31	322	330	336	340	4:
36	30	3016	306	30	306	306	305	30	30	30	30 c	306	307	300	309	31	31	32	327	33	344	352	359	364	6
306	32	322	322	32	322	322	322	32	322	322	322	322	323	324	325	328	332	338	34	3.	364	373	381	397	399
	:ss	S	ive	$3{ }^{5}$	338	338	338	338	338	38	358	338	359	341	342	34	3	35:	36	37	385	393	492	408	
4200	35	354	$3{ }_{3}$	354	354	354	354	354	354	354	354	354	3.5	356	359	361	36	372	380	390	400	$3: 1$	420	426	425
4400	30	370	310	37	370	37	30	370	37	w	370	370	37.	372	374	37	361	38	375	406	416	4.7	436	42	4.
00	$35:$	38.	386	385	उe	385	385	386	SE	36	386	385	387	388	390	393	397	403	411	420	40	440	449	455	5
4890	402	402	402	402	402	402	402	402	402	42	402	462	403	404	40:	408	$4: 2$	$4: 8$	425	434	485	452	460	465	
000	46	419	413	415	418	418	418	418	41	41	423	48	419	420	421	423	427	432	438	4	45	463	470	47	

Tab. 5.4. Distribuzione della temperatura nel sottosuolo di Lipari-Monte Guardia, relativa ad oggi, calcolata mediante il modello di raffreddamento conduttivo di camere magmatiche. La prima colonna (a sinistra) si riferisce alle profondità (in metri), mentre l'ultima riga (in basso) si riferisce alle distanze orizzontali (in metri) rispetto all'asse della camera magmatica.

	19	15	13	18	18	19	19	19	18	18	18	18	18	18	!	18	18	19	19	19	18	18	19	15
20	32	31	31	$3!$	31	31	31	31	31	31	31	31	31	3j	31	31	31	:	3	3	F	3!	31	$3!$
400	45	45	45	45	45	4	45	45	45	45	45	45	45	15	45	45	45	45	45	45	85	45	45	45
600	s?	59	5	59	59	59	59	59	59	59	¢	59	59	59	59	59	5	5	55	5	59	59	5	5
300	İ	72	2	72	12	12	72	72	72	72	72	72	72	72	72	72	? 2	2	?	12	12	72	? 2	72
1000	86	(id	\%	86	86	82	86	86	86	86	8	86	86	86	86	86	56	E	*	ss	58	80	\%	8
12	97	99	9	99	99	99	99	99	99	97	99	99	99	99	99	99	99	\%\%	9	9	9	97	9	9
140	13	$1: 3$	113	113	113	113	113	113	113	113	13	113	133	113	113	113	113	12	113	113	115	113	:	113
160	126	:28	126	126	126	126	126	128	126	126	126	126	126	126	126	126	126	126	125	125	:26	125	25	123
1830	140	193	150	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	149
2000	154	154	: 5	154	154	154	154	154	154	154	154	154	154	154	154	154	15	159	15	154	157	:54	154	159
2250	167	157	167	167	167	167	167	167	167	167	167	167	163	167	167	167	167	167	167	167	167	167	107	187
240	: 81	181	$18:$	131	181	181	181	181	181	181	181	181	181	181	181	181	181	131	191	181	$18:$	191	31	19:
260	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	19	195	195	199
2000	208	208	208	209	201	208	208	208	208	208	208	208	208	209	208	208	208	20	20	298	20	209	$2: 0$	211
3000	221	22	271	221	221	221	221	22!	221	221	221	221	221	221	221	221	221	222	222	22	223	225	227	229
320	235	255	285	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	236	2 7	239	242	24	249
340	248	242	248	248	248	248	248	248	248	248	248	248	248	248	248	248	249	249	250	2 S	257	263	270	276
3600	262	2	202	262	262	262	262	262	262	262	262	262	262	262	252	252	362	253	255	269	276	298	299	308
3800	276	276	276	276	276	276	276	276	276	276	276	276	276	276	276	276	276	271	280	286	297	315	35	47
100	29	289	289	259	289	289	299	299	289	299	289	289	299	289	289	289	290	$29!$	295	393	318	341	356	387
4200	303	303	303	303	303	303	303	303	303	303	303	303	303	303	303	303	303	305	310	32	339	366	39	424
4400	316	316	3!	318	316	315	316	316	316	316	316	316	316	316	316	316	317	319	324	336	357	387	423	451
4600	30	30	330	330	330	330	330	330	330	330	330	330	330	330	230	330	331	32	338	349	370	401	437	66
\%	34	34:	348	345	34	343	343	343	345	345	345	343	345	343	343	34	344	346	*	301	380	1	441	46
	2 t	35	337	357	357	357	357	357	357	357	357	357	357	357	357	357	353	359	363	371	387	411	7	459

Tab. 5.5. Distribuzione della temperatura nel sottosuolo di Lipari-Monte Pilato, relativa a 10000 anni fa, calcolata mediante il modello di raffreddamento conduttivo di camere magmatiche. La prima colonna (a sinistra) si riferisce alle proiondità (in metri), mentre l'ultima riga (in basso) si riferisce alle distanze orizzontali (in metri) rispetto all'asse della camera magmatica.

		18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	
	200	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	.
	400	46	46	46	46	46	46	1	46	46	46	46	46	46	4	46	46	46	46	16	46	46	46	46	46	
	600	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	
	800	73	73	73	73	73	73	73	73	73	73	7	万	73	13	73	7	73	73	73	73	73	73	73	73	\%
	1000	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	97
	1200	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101)
	1400	15	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	
	1600	128	128	128	128	128	128	128	128	128	128	128	128	128	129	128	128	129	129	129	129	129	129	129	129	
	180	142	142	142	142	142	142	142	142	142	142	142	142	142	142	142	142	142	143	143	143	14	144	144	144	
	2000	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	157	157	157	158	159	15	159	
	2200	170	170	170	170	170	170	170	170	170	170	170	174	170	170	170	170	170	171	171	172	173	174	175	176	
	2400	184	184	184	184	184	184	184	184	184	184	184	184	184	184	184	184	185	185	186	188	190	191	193	194	
	2600	198	198	198	198	198	198	198	198	198	198	198	198	198	198	198	198	199	20	202	204	207	210	213	215	
	2800	211	211	211	211	211	211	211	211	21	211	211	21	21	212	212	212	213	215	218	222	226	231	235	238	
	3000	225	225	225	225	225	225	225	225	225	225	225	225	225	225	226	227	228	231	235	240	247	254	260	265	
	3200	239	239	239	239	239	239	239	239	239	239		239	239	239	240	241	243	247	252	260	269	279	288	294	
	3400	253	253	253	253	253	253	253	253	253	253	253	253	253	253	254	255	258	263	270	280	292	305	31	325	
	36	267	267	267	267	267	267	267	267	267	267	267	267	267	267	268	270	273	279	288	300	315	332	34	357	
	3800	281	291	281	281	281	281	281	281	281	281	281	281	281	281	288	284	288	295	306	320	338	357	374	387	
	4000	294	294	294	294	294	294	29	294	294	294	294	294	295	295	296	299	303	311	322	339	359	380	399	413	,
	4200	309	308	302	308	308	308	308	308	308	308	308	309	309	309	310	313	317	326	338	355	376	399	42	434	
	4400	322	322	322	322	322	322	322	322	322	322	322	322	322	323	324	327	331	339	352	369	391	414	434	449	
	4600	336	336	336	336	336	336	336	336	336	336	336	336	336	337	338	340	345	353	365	381	401	423	43	457	
	4800	350	350	350	350	350	350	350	350	350	350	350	350	350	350	351	354	358	365	376	391	409	429	447	460	
	5000	364	364	364	364	364	364	364	364	364	364	364	364	364	364	365	367	370	377	386	399	415	432		458	

Tab. 5.6. Distribuzione della temperatura nel sottosuolo di Lipari-Monte Pilato, relativa ad oggi, calcolata mediante il modello di raffreddamento conduttivo di camere magmatiche. La prima colonna (a sinistra) si riferisce alle profondità (in metri), mentre l'ultima riga (in basso) si riferisce alle distanze orizzontali (in metri) rispetto all'asse della camera magmatica.

		\%	30	20	20	20	29	20	20	$7 n$	20	20	20	20	20	20	27	20			20	20	
	4	49	40	4.	4	41	40	4	30	40	40	40	40	40	40	40	48	4	6)	40	40	40	$4 \hat{0}$
40	60	63	69	60	69	54	60	60	$6 ?$	50	50	60	60	60	6	60	50	6	6	68		0	40
60	?	9	T9	77	7	79	7	7	79	$7 ?$	79	79	79	79	79	79	75	70	79	79			79
6	97	9	99	99	99	99	99	99	9	99	99	99	99	99	9	99	9	99	99	98	99	99	9
00	14	$1: 9$	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	$1: 9$	119	119	19	19	119
:20	:39	23	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	13	139	137	35	139
140	159	159	159	159	159	159	159	159	159	159	159	159	159	159	159	159	159	159	157	159	159	159	159
600	175	173	179	178	178	179	172	179	178	178	178	178	178	178	178	178	:78	173	178	178	178	179	17917
120	170	198	198	198	198	198	198	198	198	198	190°	198	198	198	198	198	95	198	198	19	! 5	198	199
200	219	215	218	218	218	218	218	218	218	218	218	218	218	218	218	218	218	215	219	218	219	219	219
2 Cos	23	235	238	235	238	238	238	236	238	238	238	338	238	238	238	238	23E	238	238	238	239	239	240
2400	253	253	25	258	258	258	258	258	259	259	258	258	258	25	258	259	25	258	258	25	259	25	262
260	27	275	278	278	278	278	276	278	275	276	278	278	278	27	278	276	278	278	278	779	28.	284	28
230	29	297	29	297	297	297	297	297	297	297	297	297	297	297	297	297	297	298	298	300	304	309	35
sol	817	2.7	317	317	317	317	317	317	317	317	317	317	317	317	317	317	317	318	319	322	329	339	350 35
320	3:	33	3	33	337	337	337	337	337	337	337	337	337	35	357	37	37	338	359	345	357	37	39240
340	:	35	357	357	357	357	357	357	357	357	357	357	357	35	35	357	35	358	364	36 ?	368	415	443 4s:
3600	377	777	37	377	377	37	377	377	377	377	577	377	377	377	377	377	377	378	332	395	42	452	504
3800	397	397	397	397	397	397	397	397	377	397	397	397	397	397	357	397	397	398	404	422	459	514	572
400	415	410	416	416	416	416	416	416	416	416	416	416	416	416	416	416	417	418	426	449	497	569	644696
$: 200$	43	436	436	436	436	$4{ }^{4} 6$	436	436	436	$4{ }^{4} 6$	436	436	436	436	436	436	437	439	448	476	536	624	715778
440	456	456	456	456	456	456	456	456	456	456	456	456	458	456	456	456	456	159	470	502	572	674	780854
4600	476	476	476	476	476	476	476	. 176	476	47	478	476	47\%	476	476	476	976	479	491	527	60	718	836918
4800	496	498	496	498	49	496	498	496	498	496	496	396	198	496	496	49	49	499	512	.	60	754	880
500	516	5:6	516	516	516	516	516	516	516	516	$5!6$	516	516	516	516	516	516	519	532	572	657	782	9111002
5200	535	535	535	535	135	535	535	55	135	535	585	535	535	535	535	535	533	539	552	59%	676	801	930
5400	ミ5̇	555	555	555	55\%	555	555	555	55s	555	555	555	555	555	35\%	555	550	559	57	610	692	815	938
St	575	5\%5	575	575	575	575	575	W\%	575	575	575	575	575	575	575	575	575	578	590	627	704	818	936
5900	5\%5	595	595	595	595	595	595	595	595	595	595	595	595	. 595	595	535	595	598	609	6.2	712	816	924
6000	615	615	615	615	615	615	615	65	$6!5$	615	315	615	615	615	615	615	615	617	527	656	718	: 809	904970
3200	634	654	634	634	634	634	634	653	654	634	635	634	634	¢34	639	633	635	63	645	669	722	799	879935
5400	654	654	654	654	654	654	654	654	654	654	654	854	654	654	654	654	655	656	663	682	725	78	851

$\overline{6}-10000-9563-9167-8750-6335-7917-7500-7083-6667-6250-5853-5417-5000-4563-4167-3750-3353-2917-2500-2085-1657-1250-833-41$

Tab. 5.7. Distribuzione della temperatura nel sottosuolo dei Campi Flegrei, relativa a a 3000 anni fa, calcolata mediante il modello di raffreddamento conduttivo di camere magmatiche. La prima colonna (a sinistra) si riferisce alle profondita (in metri), mentre l'ultima riga (in basso) si riferisce alle distanze orizzontali (in metri) rispetto all'asse della camera magmatica.

 - 气
Tab. 5.8. Distribuzione della temperatura nel sottosuolo del Campi Flegrel, relativa ad oggi, calcolata mediante il modello dl raffreddamento conduttivo dl camere magmatiche. La prima colonna (a sinistra) si riferisce alle profondità (in metri). mentre l'ultima riga (in basso) si riferisce alle distanze orizzontali (in metri) rispetto all'asse della camera
magmatica.

兄第た

的二ちニロ

我品 ニ

Tab．5．10．Distribuzione della temperatura nel sottosuolo del Vesuvio，relativa a 3800 anni
 prima colonna（a sinistra）si riferisce alle profondità（in metri），mentre l＇ultima riga（in basso）si riferisce alle distanze orizzontall（in metri）rispetio all＇asse della camera magmatica．

的心に

Tab. 5.12. Distribuzione della temperatura nel sottosuolo del Vesuvio, relativa a 1790 anni fa, calcolata mediante II modello di raffreddamento conduttivo di camere magmatiche. La prima colonna (a sinistra) si riferisce alle profondità (in motri), mentre l'ultima riga (in basso) si riferisce alle distanze orizzontall (in metrl) rispetto all'asse della camera

Tab. 5.15. Distribuzione della temperatura nel sottosuolo del Vesuvio, relativa a 362 anni
fa, calcolata mediante II modello di raffreddamento conduttivo di camere magmatiche. La
prima colonna (a sinistra) si riferisce alle profondità (in metri), mentre l'ultima riga (in
basso) si riferisce alle distanze orizzontall (in metri) rispetto all'asse della camera
magmatica.

6.1. Aggiornamento delle metodologie di valutazione delle risorse

A seguito di una rivisitazione critica dei metodi di valutazione del potenziale geotermico, il metodo del volume è stato scelto come strumento di lavoro principaler dopo aver eseguito:

- una sua revisione, volta a permettere la delimitazione non dei serbatoi geotermici potenziali, ma dei serbatoi geotermici effettivi; le zone caratterizzate da alti valori di PCO2 nelle acque di circolazione poco profonda e dalla presenza di emissioni di gas direttamente dal terreno ben corrispondono con la estensione già nota dei serbatoi geotermici di alta entalpia (Monte Amiata e Latera), media entalpia (Torre Alfina) e bassa entalpia (Viterbo); pertanto questo criterio è stato utilizzato per delimitare l'estensione dei serbatoi geotermici in zone scarsamente (o non) esplorate mediante pozzi profondi.
- una sua calibrazione in base ai dati di produzione relativi a campi geotermici in sfruttamento o comunque sufficientemente conosciuti; in particolare è stata evidenziata una buona correlazione fra portata oraria di fluido totale estratto o estraibile e volume totale del serbatoio geotermico (roccia + fluido), sia per i serbatoi toscani a vapore dominante di Larderello, Travale, Bagnore e Piancastagnaio, sia per i sistemi a liquido prevalente di Torre Alfina, Latera, Cesano e Mofete; ció suggerisce che i campi geotermici a vapore dominante producono e/o possono produrre in media circa $20 \mathrm{t} / \mathrm{h}$ di fluido per km^{3} di serbatoio totale (roccia + fluido), mentre la produzione di quelli a liquido dominante è mediamente stimabile in circa $40 \mathrm{t} / \mathrm{h}$ di fluido totale per km^{3} di serbatoio totale.

6.2.

Applicazioni
Dati idrogeochimici di buona qualità analitica ed alta densità di campionamento, tali da consentire lo studio della distribuzione della Pco2 nelle acque di circolazione poco profonda, e di conseguenza la applicazione del metodo del volume per valutare il potenziale geotermico, sono disponibili in Toscana solamente per l'area del Monte Amiata, gran parte del Lazio, alcuni settori della Campania (Roccamonfina, Campi Flegrei, Ischia, Vesuvio) e per la zona del Vulture in Basilicata. Per quanto riguarda l'area del Monte Amiata, a causa della non omogenea distribuzione delle sorgenti, è possibile accertare la presenza di acque con elevati valori di $P_{C O 2}$ al di sopra dei serbatoi geotermici noti, ma non è possibile nè la delimitazione di tali serbatoi nè la applicazione del metodo del volume.

Nel caso delle isole di Lipari, Vulcano, e Pantelleria e del graben del Campidano è stata riesaminata la

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

documentazione disponibile ed è stato definito un modello geochimico-geotermico concettuale. E' stato possibile delimitare i serbatoi geotermici effettivi ed applicare il metodo del volume alle isole di Lipari e Vulcano, e, anche se con maggiori incertezze, all'isola di Pantelleria.

In alcune aree vulcaniche attive (es. Campi Flegrei, Vesuvio, Lipari) caratterizzate da messa in posto di una camera magmatica recente (< 0.1 milioni di anni), ove si sono verificati processi di stazionamento e differenziazione di magmi, è stato applicato il modello di raffreddamento conduttivo della camera magmatica, per stimare la possibile distribuzione delle temperature in profondita. Tale modello non è comunque un metodo di valutazione del potenziale geotermico.

6.3. Risultati

In Toscana non è stato possibile applicare la metodologia messa a punto in questo lavoro, poichè, a causa della scarsita di dati idrogeochimici di superficie disponibili, non possono essere identificati e delimitati i serbatoi geotermici effettivi. E' stato comunque verificato che, se si estende la produttivita specifica dei serbatoi effettivi ai serbatoi potenziali, si ottengono risultati (potenze termiche) irragionevolmente elevate.

Attualmente la potenza termica estratta dai campi geotermici di Larderello, Travale-Radicondoli e Monte Amiata, che sono classificabili come riserve geotermiche di categoria A, è di circa 2150, 330 e 395 MWt, rispettivamente.

Nel Lazio sono stati delimitati 17 serbatoi geotermici, fra i quali sono degni di nota i seguenti:

- Latera, che si colloca fra le riserve di categoria A, con una potenza termica di 440-550 MWt;
- Torre Alfina, che è da inserire fra le riserve di categoria B, con una potenza termica di 170-200 MWt; - Manziana (150-190 MWt), Capranica (180-200 MWt), Monterosi (140-160 MWt) e Bolsena (60-90 MWt), che sono da considerare risorse subeconomiche di categoria B; - Viterbo (110-190 MWt), che costituisce una riserva di categoria C
- Grottaferrata e Colli Albani ovest che, pur essendo risorse subeconomiche di categoria C, sono da segnalare per la elevata potenza termica, di 190-250 MWt e 560-760 MWt, rispettivamente.
Il campo geotermico di Cesano non è incluso fra di essi, poichè non è stato possibile applicare il metodo del volume a causa della scarsità di dati idrogeochimici di superficie disponibili. In base ai dati di produzione esso si colloca fra le risorse subeconomiche di categoria B, con una potenza termica di 100-160 MWt.

In Campania sono stati individuati 9 serbatoi geotermici, fra i quali sono da considerare i seguenti:

Geotermica Itallana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

- Campi Flegrei (680-1130 MWt) ed Ischia (340-440 MWt) che fanno parte delle riserve di categoria A
- Suio (20-70 MWt) e, almeno in parte, Pompei (20-60 MWt) che sono classificabili come riserve di categoria C.

In Basilicata, nella zona di Monte Vulture, sono stati identificati 4 serbatoi geotermici, classificabili come risorse subeconomiche di categoria C.

Nelle isole, bisogna segnalare i serbatoi geotermici di Lipari (180-200 MWt), Pantelleria (140-160 MWt) e Vulcano Porto (10-13 MWt), che si collocano fra le riserve di categoria A.

Complessivamente le riserve di categoria A (Tabella 6.1.a) ed le riserve e risorse subeconomiche di categoria B (Tabella 6.1.b) identificate ammontano a circa 4680-5330 MWt e 800-990 MWt, rispettivamente.

	Area	T- (${ }^{\circ} \mathrm{C}$)	T+ (${ }^{\circ} \mathrm{C}$)	W- (MWt)	W+ (MWt)	d (km)	Tm (${ }^{\circ} \mathrm{C}$)	Note
1	Larderello	235	303	2174	2125	. 850	269	riserva (dati produzione)
1	Travale	213	263	329	329	1.850	238	riserva (dati produzione)
3	Monte Amiata	197	284	395	393	. 600	240	riserva (dati produzione)
4	Latera	190	230	440	547	1.190	210	riserva
5	Vico	180	230	2	3	2.580	205	riserva
6	Campi Flegrei	220	350	677	1128	1.050	285	riserva
7	Ischia	240	300	340	435	1.000	270	riserva
8	Lipari	200	220	179	199	250	210	riserva
9	Vulcano Porto	200	250	10	13	. 250	225	riserva
10	Pantelleria	210	240	138	160	. 450	225	riserva
11	TOTALI	-	-	4684	5332	-		

[^5]| | Area | T- (${ }^{\circ} \mathrm{C}$) | T+ $\left({ }^{\circ} \mathrm{C}\right)$ | W- (MWt) | W+ (MWt) | d (km) | $\mathrm{Tm}\left({ }^{\circ} \mathrm{C}\right)$ | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Torre Alfina | 125 | 140 | 174 | 200 | 1.200 | 132 | riserva |
| 2 | Cesano | 141 | 221 | 96 | 162 | 1.750 | 181 | risorsa (dati produzione) |
| 3 | Manziana | 150 | 180 | 151 | 188 | 1.800 | 165 | risorsa |
| 4 | Capránica | 180 | 200 | 175 | 198 | 1.920 | 190 | risorsa |
| 5 | Monterosi | 180 | 200 | 138 | 156 | 2.000 | 190 | risorsa |
| 6 | Bolsena | 160 | 210 | 63 | 86 | 2.500 | 185 | risorsa |
| 7 | TOTALI | - | . | 798 | 990 | - | - | |

Tab. 6.1.b. Riserve e risorse geotermiche di categoria B identificate in Italia. I simboli si
riferiscono alle seguenti variabili:

- T-: temperatura minima del serbatoio geotermico;
- T+: temperatura massima del serbatoio geotermico;
- W-: potenza termica minima estraibile dal serbatoio geotermico;
- W+: potenza termica massima estraibile dal serbatoio geotermico;
- d: profondità media del tetto del serbatoio geotermico;
- T_{m} : temperatura media del serbatoio geotermico.

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

BIBLIOGRAFIA

Agip (1987). Geologia e geofisica del sistema geotermico dei Campi Flegrei. Rapporto DES SERG-MESG, 19 p.

Allegrini G., Corsi R., Culivicchi G., Di Falco R., Fiordelisi A., Grassi A., Nardini G., Nencetti G.F.r Tomei B. (1982). Fluid management of the Cesano reservoir: experimental activity. 1st Turkish-Italian seminar on geothermal energy. Ankara-Kizildere Sept. 6th-28th, 1982. Vol. II, Comparative examination of the Kizildere and Cesano geothermal fields, 143-206.

Armienti P., Barberi F., Bizouard H., Clocchiatti R., Innocenti F., Metrich N., Rosi M., Sbrana A. (1983). The Phlegraean Fields: magma evolution within a shallow chamber. J. Volcanol. Geotherm. Res., 17, 289-311.

Armienti P., Barberi F., Innocenti F. (1984). A model of the Phlegraean Fields magma chamber in the last 10,500 years. Bull. Volcanol., 47, 349-358.

Baldi P., Buonasorte G., Cameli G.M., Cigni U., Funiciello R., Parotto M., Scandiffio G., Toneatti R. (1982). Exploration methodology, deep drilling and geothermal model of the Cesano field (Latium-Italy). 1st Turkish-Italian seminar on geothermal energy. Ankara-Kizildere Sept. 6th28th, 1982. Vol. II, Comparative examination of the Kizildere and Cesano geothermal fields, 54-128.

Balducci S., Vaselli M., Verdiani G. (1983). Exploration well in the "Ottaviano" permit, Italy: "Trecase 1". Third International Seminar on the Results of the EC Geothermal Energy Research, Munich, 29 Nov - 1 Dec, 407-418.

Barberi F., Innocenti F., Ferrara G., Keller J., Villari L. (1974). Evolution of the Eolian arc volcanism (Southern Tyrrhenian Sea). Earth Planet. Sci. Lett., 21, 269-276.

Barberi F., Innocenti F., Lirer L., Munno R., Pescatore P. (1978). The Campanian Ignimbrite: a major prehistoric eruption in the Neapolitan area (Italy). Bull. Volcanol., 41, 1-22.

Barberi F., Cioppi D., Ghelardoni R., Nannini R., Sommaruga C., Verdiani G. (1980). Integrated geothermal reconnaissance of the Somma-Vesuvius system. Second International Seminar on the Results of the EC Geothermal Energy Research, Strasbourg, 4-6 March 1980, 141-153.

Barberi F., Bizouard H., Clocchiatti R., Metrich N., Santacroce R., Sbrana A. (1981). The Somma-Vesuvius magma chamber: a petrological and volcanological approach. Bull. Volcanol., 44, 295-315.

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
Barberi E., Buonasorte G., Cioni R., Fiordelisi A., Foresi L., Iaccarino S., Laurenzi M.A., Sbrana A., Vernia L., Villa I.M. (1993). Plio-pleistocene geological evolution of the geothermal area of Tuscany and Latium. Boll. Soc. Geol. It. (in stampa).

Barbier E. (1969). Rapporto definitivo sulle perforazioni per ricerca di energia endogena nell'Isola di Pantelleria. Centro Studi Geotermici del CNR, Pisa, 51 p.

Barbier E., Panichi C., Tongiorgi E. (1969). Le acque termali di Pantelleria. Congr. Int. Ass. It. di tecnica idrotermale, Napoli.

Beccaluva L., Deriu M., Macciotta G., Savelli C., Venturelli G. (1976-77). Geochronology and magmatic character of the Pliocene-Pleistocene volcanism in Sardinia (Italy). Bull. Volcanol., 40, 153-168.

Bertorino G., Caboi R., Caredda A.M., Cidu R., Fanfani L., Sitzia R., Zuddas P. (1982 a). Idrogeochimica del graben del Campidano. In "Ricerche geotermiche in Sardegna, con particolare riferimento al graben del Campidano", CNR-PFERF10, 104-123.

Bertorino G., Caboi R., Caredda A.M., Cidu R., Fanfani L., Panichi C., Sitzia R., Zuddas P. (1982 b). Alcune considerazioni sulla geochimica delle acque termali del graben del Campidano. In "Ricerche geotermiche in Sardegna, con particolare riferimento al graben del Campidano", CNR-PFE-RF10, 133-143.

Bertrami R., Cameli G.M., Lovari F., Rossi U. (1984). Discovery of Latera geothermal field: problems of the exploration and research. U.N. seminar on utilization of geothermal energy for electric power production and space heating, Florence, 14-17 May 1984, 18 p.

Billi B., Cappetti G., Luccioli F. (1986). Enel activity in the research, exploration and exploitation of geothermal energy in Italy. Geothermics, 15, 765-779.

Bodvarsson G. (1974). Geothermal resource energetics. Geothermics, 3, 83-92.

Bottinga Y. and Weill D.F. (1970). Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Am. J. Sci., 272, 169-182.

Bruni P., De Marinis R., Millesimi F., Principe C. (1984). Studio vulcano-tettonico del Monte Vulture. Rapporto inedito Agip-Esge, 38 p.

Buonasorte G., Cataldi R., Ceccarelli A., Costantini A., D'Offizi S.r Lazzarotto A., Ridolfi A., Baldi P., Barelli A., Bertini G., Bertrami R., Calamai A., Cameli G., Corsi

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
R., Dacquino C., Fiordelisi A., Ghezzo A. e Lovari F. (1988). Ricerca ed esplorazione nell'area geotermica di Torre Alfina (Lazio-Umbria). Boll. Soc. Geol. It., 107, 265337.

Bwire-Ojiambo S. (1990). Country update report for Kenya. Geotherm. Res. Council Trans., 14, 183-185.

Caboi R., Cidu R., Pala A., Pecorini G. (1982). Le acque fredde della Sardegna. Lineamenti idrogeologici ed idrogeochimici. In "Ricerche geotermiche in Sardegna, con particolare riferimento al graben del Campidano", CNR-PFERF10, 25-55.

Caboi R., Cidu R., Fanfani L., Zuddas P. (1986). Geochemistry of thermal waters in Sardinia (Italy). Eifth Int. Symp. Water-Rock Interaction, Reykjavik, Iceland, August 8-17, 92-95.

Caboi R., Fanfani L., Pecorini G., Fancelli R., Squarci P., Taffi L. (1988 a). Inventario delle risorse geotermiche nazionali. Regione Sardegna. Ministero dell'Industria, del Commercio e dell'Artigianato, 34 p.

Caboi R., Cidu R., Cristini A., Fanfani L., Zuddas P., Zanzari A.R. (1988 b). Studio geochimico delle acque termali di Casteldoria. 2° Sem. Inf. CNR-PFE Sottoprogetto Energia Geotermica, Ferrara 21-22 dicembre, SI-5, 597-613.

Caboi R., Cidu R., Cristini A., Fanfani L., Zuddas P. (1989). The geothermal area of the Tirso valley (Sardinia, Italy). Proceedings 6th Int. Symp. Water-Rock Interaction, Malvern, 3-8 August, Miles D.L. Ed., 125-128.

Caboi R., Cidu R., Fanfani L., Zuddas P., Zanzari A.R. (1993). Geochemistry of the high-Pco2 waters in Logudoro, Sardinia, Italy. Applied Geochemistry, 8, 153-160.

Caicedo A.A. and Palma J.A. (1990). Present status of exploration and development of the geothermal resources of Guatemala. Geotherm. Res. Council Trans., 14, 97-105.

Calamai A., Cataldi R., Squarci P., Taffi L. (1970). Geology, geophysics and hydrogeology of the Monte Amiata geothermal fields. Geothermics, Special Issue 1.

Carella R., Verdiani G., Palmerini C.G., Stefani G.C. (1984). Geothermal activity in Italy: present status and prospects. U.N. seminar on utilization of geothermal energy for electric power production and space heating, Florence, 14-17 May 1984, 9 p.

Carella R., Verdiani G., Palmerini C.G., Stefani G.C. (1985). Geothermal activity in Italy: present status and prospects. Geothermics, 14, 247-254.

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
Carson C.C. and Lin Y.T. (1981). Geothermal costs and their sensitivities to changes in drilling and completion operation.

Carslaw H.W. and Jaeger J.C. (1959). Conduction of heat in solids. 2nd Ed. Clarendon press, Oxford, 496 p.

Cataldi R. and Celati R. (1983). Review of Italian experience in geothermal resource assessment. $2 b l$. Geol. Paläontol. Teil $1,168-184$.

Cataldi R., Ceron P., Di Mario P., Leardini T. (1970). Progress report on geothermal development in Italy. Geothermics, 2, 77-87.

Cataldi R., Lazzarotto A., Muffler P., Squarci P., Stefani G. (1978). Assessment of geothermal potential of Central and Southern Tuscany. Geothermics, 7, 91-131.

Cataldi R. e Squarci P. (1978). Valutazione del potenziale geotermico in Italia con particolare riguardo alla Toscana centrale e meridionale. Ass. Elettrotecnica Italiana, I.32, 1-8.

Cataldi R., Stefani G., Tongiorgi M. (1963). Geology of Larderello region (Tuscany): contribution to the study of the geothermal basins. In: "Nuclear Geology on Geothermal Areas", (E. Tongiorgi, editor), Proceedings of Spoleto Meeting, C.N.R. Laboratorio di Geologia Nucleare, Pise, 235265.

Ceron P., Di Mario P., Leardini T. (1976). Progress report on geothermal development in Italy from 1969 to 1974 and future prospects. Proc. 2nd U.N. Symposium on Development and Use of Geothermal Resources, San Francisco, May 1975, 1, 59-66.

Chappel R.N. et al. (1979). Geothermal well drilling estimates based on past well costs. Geotherm. Res. Council Trans., 3.

Chelini W. and Sbrana A. (1987). Subsurface geology. In "Phlegrean Fields" (M. Rosi \& A. Sbrana, Eds). Quaderni de "La ricerca scientifica", 114, vol. 9, 94-103.

Chiodini G., Comodi P., Giaquinto S., Mattioli B., Zanzari A.R. (1988). Cold groundwater temperatures and conductive heat flow in the Mt Amiata geothermal area, Tuscany, Italy. Geothermics, 17, 645-656.

Chiodini G. and Cioni R. (1989). Gas geobarometry for hydrothermal systems and its application to some Italian geothermal areas. Appl. Geochem., 4, 465-472.

Chiodini G., Cioni R., Guidi M., Marini L., Raco B., Taddeucci G. (1992). Gas geobarometry in boiling

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

hydrothermal systems: a possible tool to evaluate the hazard of hydrothermal explosions. Acta Vulcanologica, Marinelli Volume, 2, 99-107.

Chiodini G., Cioni R., Marini L. (1993). Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance. Appl. Geochem., 8, (in press).

Cioni R. and D'Amore F. (1984). A genetic model for the crater fumaroles of Vulcano Island (Sicily, Italy). Geothermics, 13, 375-384.

Cioni R., Corazza E., Magro G., Guidi M., Marini L. (1988). Reactive and inert gases in low temperature fumaroles (Aeolian Islands, Italy). Rend. Soc. It. Miner. Petrol., M. Carapezza volume, 43, 1003-1011.

Civetta L., Cornette Y., Crisci G., Gillot P.Y.r Orsi G., Requejo C.S. (1984). Geology, geochronology and chemical evolution of the island of Pantelleria. Geol. Mag., 121, 541-668.

Clocchiatti R., Del Moro A., Gioncada A., Joron J.I., Pinarelli L., Sbrana A. (1993). Evoluzione geochimica ed isotopica del complesso di Vulcano negli ultimi 50 ka . Convegno Annuale CNR-GNV, Roma, 8-10 giugno (riassunto).

Crisci G.M., De Rosa R., Esperança S., Mazzuoli R., Sonnino M. (1991). Temporal evolution of a three component system: the island of Lipari (Aeolian Arc, southern Italy). Bull. Volcanol., 53, 207-221.

De Astis G., Frazzetta G., La Volpe I. (1989). I depositi di riempimento della Caldera del Piano e i depositi della Lentia. Boll. GNV, 5, 763-778.

De Fiore O. (1924). Brevi note sull'attivita di Vulcano (Isole Eolie) dal 1890 al 1924. Bull. Volcanol., 2, 155-156.

De Rosa R., Frazzetta G., La Volpe L., Mazzuoli R. (1988). The Spiaggia Lunga scoriae deposits: an example of fissural type eruption at Vulcano (Aeolian Islands, Italy). Rend. Soc. It. Miner. Petrol., 43, 1059-1068.

Dettori B., Zanzari A.R., Zuddas P. (1982). Le acque termali della Sardegna. In "Ricerche geotermiche in Sardegna, con particolare riferimento al graben del Campidano", CNR-PFERF10, 56-86.

Di Mario P. e Leardini T. (1974). Aspetti tecnico-economici della produzione geotermica. Giornata di studio FAST sull'energia geotermica. Milano, 7 giugno 1974, 15 p .

Dongarrà G., Hauser S., Alaimo R., Carapezza M., Tonani F. (1983). Hot waters on Pantelleria island. Geochemical

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

features and preliminary geothermal investigations. Geothermics, 12, 49-63.

Duprat A. and Ungemach P. (1985). An updated conceptual model of the Travale geothermal field based on recent geophysical and drilling data. Geothermics, 14, 755-774.

ELC-Electroconsult (1982). Sfruttamento di risorse geotermiche ad Ischia con centrale sperimentale a ciclo binario. Rapporto CNR-PFE ISC-D-5477, 64 p.

Enel (1977). Reference notes for the field trips. Larderello Workshop on Geothermal Resource Assessment and Reservoir Engineerin. September 12-16, 1977, 26 p.

Fagioli M.T. (1981). Camere magmatiche superficiali come sorgenti di calore in sistemi geotermici: un approccio vulcanologico-petrologico al caso di Lipari. Tesi di Laurea della Università di Pisa, 223 p.

Faraone D., Silvano A., Verdiani G. (1986). The monzogabbroic intrusion in the island of Vulcano, Aeolian Archipelago, Italy. Bull. Volcanol., 48, 299-307.

Ferrara G.C., Luccioli F., Palmerini G.C., Scappini (1985). Update report on geothermal development in Italy. Proceedings, 1985 International Symposium on Geothermal Energy, Kailua-Kona HI, International volume, 95-105.

Fournier R.O. (1979). A revised equation for the Na / K geothermometer. Geotherm. Res. Council Trans., 3, 221-224.

Fournier R.O. and Potter R.W. (1982). A revised and expanded silica (quartz) geothermometer. Geotherm. Res. Council Bulletin, 11, 3-9.

Frazzetta G., Lanzafame G., Villari L. (1982). Deformazioni e tettonica attiva a Lipari e Vulcano (EOlie). Mem. Soc. Geol. It., 24, 293-297.

Frazzetta G. e La Volpe I. (1987). Storia eruttiva dell'isola di Vulcano: stato di avanzamento della ricerca. Boll. GNV, 3, 361-372.

Frazzetta G. and La Volpe L. (1991). Volcanic history and maximum expected eruption at "La Fossa di Vulcano" (Aeolian Islands, Italy). Acta Vulcanologica, 1, 107-113.

Gianelli G., Puxeddu M., Batini F., Bertini G., Dini I., Pandeli E., Nicolich R. (1988). Geological model of a young volcano-plutonic system: the geothermal region of Monte Amiata (Tuscany, Italy). Geothermics, 17, 719-734.

Gianelli G. e Scandiffio G. (1989). The Latera geothermal system (Italy): chemical composition of the geothermal fluid and hypotheses on its origin. Geothermics, 18, 447-463.

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

Gioncada A. and Sbrana A. (1991). "La Fossa caldera", Vulcano: inferences from deep drillings. Acta Vulcanologica, 1, 115-125.

Giggenbach W.F. (1988). Geothermal solute equilibria. Derivation of $\mathrm{Na}-\mathrm{K}-\mathrm{Mg}-\mathrm{Ca}$ geoindicators. Geochim. Cosmochim. Acta, 52, 2749-2765.

Gillot P.Y., Frazzetta G., La Volpe L. (1990). Volcanotectonic evolution of Vulcano (Aeolian Islands, southern Italy) from geochronological (K-Ar) study. International Volcanological Congress, Mainz, FRG, September 3-8 (abstract).

Guglielminetti M. (1986). Mofete geothermal field. Geothermics, 15, 781-790.

Harbaugh J.W. and Bonham-Carter G. (1970). Computer simulation in geology. Wiley Interscience, 574 p.

Howard J.H. (1980). Price and cost estimates for hot water geothermal energy. Geotherm. Res. Council Trans., 4.

Keller J. (1980). The island of Vulcano. Rend. Soc. It. Miner. Petrol., 36, 369-414.

Laurenzi M.A., Brocchini D.I., Principe C., Ferrara G. (1993). Mount Vulture volcano chronostratigraphy and the effectiveness of dating young phlogopites. European Union of Geosciences VII, Strasbourg (abstract)

La Volpe L. e Principe C. (1990). Stratigrafia e storia eruttiva del Monte Vulture: revisione ed aggiornamenti. Boll. Gruppo Nazionale per la Vulcanologia, 1989/2, 889-902.

Loddo M., Mongelli F., Pecorini G., Tramacere A. (1982). Prime misure di flusso di calore in Sardegna. In "Ricerche geotermiche in Sardegna, con particolare riferimento al graben del Campidano", CNR-PFE-RF10, 181-209.

Mahood G. and Hildreth W. (1983). Nested calderas and trapdoor uplift at Pantelleria, Strait of Sicily. Geology, 11, 722-726.

Minissale A. (1991). The Larderello geothermal field: a review. Earth-Science Reviews, 31, 133-151.

Muffler L.J.P. (1973). Geothermal resources. In "United States Mineral Resources" (D.A. Brobst and W.P. Pratt Eds.) U.S. Geol. Survey Prof. Paper 820, 251-261.

Muffler P. and Cataldi R. (1978). Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.

Geotermica Italiana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
Nathenson M. (1975). Physical factors determining the fraction of stored energy recoverable from hydrothermal convection systems and conduction-dominated areas. U.S. Geol. Survey Open-Eile Report, 75-525, 38 p.

Nathenson M. and Muffler L.J.P. (1975). Geothermal resources in hydrothermal convection systems and conduction-dominated areas. In "Assessment of geothermal resources of the United States- 1975" (D.E. White and D.L. Williams Eds.). U.S. Geol. Survey Circular 726, 104-121.

Pala A., Pecorini G., Porcu A., Serra S. (1982 a). Schema geologico strutturale della Sardegna. In "Ricerche geotermiche in Sardegna, con particolare riferimento al graben del Campidano", CNR-PFE-RF10, 7-24.

Pala A., Pecorini G., Porcu A., Serra S. (1982 b). Geologia e idrogeologia del Campidano. In "Ricerche geotermiche in Sardegna, con particolare riferimento al graben del Campidano", CNR-PEE-RE10, 87-103.

Panichi C., Bolognesi L., Ghiara M.R., Noto P., Stanzione D. (1992). Geothermal assessment of the island of Ischia (Southern Italy) from isotopic and chemical composition of the delivered fluids. Jour. Volcanol. Geotherm. Res., 49, 329-348.

Pichler H. (1976). Carta geologica dell'isola di Lipari (scala 1:10,000). Litografia Artistica Cartografica, Eirenze.

Pichler H. (1980). The island of Lipari. Rend. Soc. It. Miner. Petrol., 36, 415-440.

Pivin M. (1992). French low enthalpy geothermal energy, assessment of 10 years of operation. Geothermics, 21, 927937.

Principe C. (1985). Studio vulcano-tettonico preliminare dell'isola di Lipari. Rapporto Agip, 43 p.

Principe C. and Romano G.A. (1992). GEOCH: Geochemical data of natural fluids from italian active volcanoes under surveillance, data base on EARN/BITNET network by ASTRA service, 2nd Edition.

Rannels J.E. and McLarty L. (1990). Geothermal power generation in the United States. 1985 through 1989. Geotherm. Res. Council Trans., 14, 293-304.

Renner J.L., White D.E.r Williams D.L. (1975). Hydrothermal convection systems. In "Assessment of geothermal resources of the United States- 1975" (D.E. White and D.L. Williams Eds.). U.S. Geol. Survey Circular 726, 5-57.

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
Rojas J., Menjoz A., Martin J.C., Criaud A., Fouillac C. (1987). Development and exploitation of low enthalpy geothermal systems: example of the Dogger in the Paris basin, France. 12th Workshop Geoth. Res. Eng., Stanford CA.

Rosi M., Sbrana A., Principe C. (1983). The Phlegraean Fields: structural evolution, volcanic history and eruptive mechanism. J. Volcanol. Geotherm. Res., 17, 273-288.

Rosi M., Santacroce R., Sheridan M.F. (1987). Volcanic hazard. In "Somma-Vesuvius" (R. Santacroce, Ed). Quaderni de "La ricerca scientifica", 114, vol. 8, 197-220.

Rosi M., Principe C., Vecci R. (1993). The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J. Volcanol. Geotherm. Res., in stampa.

Silvano A. (1985). La recherche géothermique à l'île de Vulcano. Géothermie Actualités, 1, 27-31.

Simsek S. and Okandan E. (1990). Geothermal energy development in Turkey. Geotherm. Res. Council Trans., 14, 257-266.

Sommaruga C. (1984). Le ricerche geotermiche svolte a Vulcano negli anni '50. Rend. Soc. It. Miner. Petrol., 39, 355-366.

Smith R.L. and Shaw H.R. (1975). Igneous-related geothermal systems. In "Assessment of geothermal resources of the United States- 1975" (D.E. White and D.L. Williams Eds.). U.S. Geol. Survey Circular 726, 58-83.

Thunell R., Federman A., Sparks S., Williams D. (1978). The age, origin and volcanological significance of the $Y-5$ ash layer in the Mediterranean. Quaternary Res., 12, 241-253.

Vezzoli L. (1988). Island of Ischia. Quaderni de "La ricerca scientifica", 114, vol. 10,133 p.

Watts M.D. (1987). Geothermal exploration of Roccamonfina volcano, Italy. Geothermics, 16, 517-528.

Wohletz K. and Heiken G. (1992). Volcanology and geothermal energy. University of California Press, 432 p .

Geotermica Itallana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

APPENDICE 1. ANALISI ECONOMICA RELATIVA ALLA GENERAZIONE GEOTERMOELETTRICA DIRETTA.

A1.1. Introduzione

In questa valutazione è stato utilizzato il discounted cash flow method, senza prendere in considerazione i benefici sociali ed il risparmio di combustibili importati.

Il costo del kWh geotermico è formato dal totale dei costi di generazione a cui vanno sommati i costi di distribuzione e di trasmissione. In questa analisi vengono esaminati solamente i costi di generazione, che nel panorama economico italiano possono essere considerati interessanti se sufficientemente inferiori alle 150 Lit/kWh. Secondo quanto stabilito dalla deliberazione del 29 aprile 1992 del Comitato Interministeriale dei Prezzi, quest'ultimo è il prezzo di cessione all'ENEL della energia generata mediante impianti geotermici, almeno per i primi 8 anni di esercizio degli impianti.

A1.2. Ipotesi di base per la valutazione del costo totale della generazione geotermoelettrica diretta

L'analisi economica è stata eseguita considerando i seguenti casi base:

- serbatoio geotermico ad acqua dominante
- temperatura del serbatoio: $230{ }^{\circ} \mathrm{C}$
- profondita media dei pozzi: 1500 m
- rapporto di successo dei pozzi (produttivi/perforati): 2/3
- portata media di ciascuno dei pozzi produttivi: 175 t/h
- rapporto fra pozzi di re-iniezione e pozzi produttivi: 1/3
- distanza media fra pozzi produttivi e pozzi di reiniezione: 1000 m
- distanza media fra pozzi produttivi e centrale geotermoelettrica: 500 m
- contenuto di gas incondensabili (rispetto al flusso massico totale): 0.50 \%
- abbattimento dell'H2S non necessario
- durata del progetto: 20 anni
- declino medio della produzione: 3\%/anno

Per quanto riguarda la potenza della centrale geotermoelettrica vengono considerate le unita da 5 MN e da 15 MW.

Le centrali da 5 MW rappresentano una dimensione piccola; sono state considerate due opzioni: a condensazione e a contropressione. Quest'ultima ha bassi costi di investimento ed è spesso installata allinizio dello sfruttamento dei campi geotermici.

Le centrali da 15 MW sono una valida alternativa; in effetti unità addizionali da 15 MW sono state installate gradualmente nel corso dello sfruttamento di alcuni campi geotermici, quali Olkaria, Kenya (Bwire-Ojiambo, 1990), Kizildere, Turchia (Simsek and Okandan, 1990), Beowawe,

Geotermica Itallana

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

Nevada (Rannels and McLarty, 1990) e sono state programmate altrove, come a Zunil, Guatemala (Caicedo and Palma, 1990). Inoltre, sei unita da 15 MW sono attualmente operative in Italia: si tratta di Larderello 2, Gabbro, Radicondoli, Piancastagnaio 2 ed una delle unita delle centrali di Serrazzano e di Lago (Cataldi et al., 1990).
D'altra parte le centrali ENEL, nominalmente da 20 MW , producono 20 MW lordi solo in condizioni che non si riscontrano normalmente nei campi geotermici, cioè: pressione di ammissione di 20 bar e contenuto di gas incondensabili dello 1.5%.

Tutte le centrali geotermoelettriche considerate sono del tipo a single flash; è stato adottato un rendimento medio pari a 0.74 rispetto alla trasformazione isoentropica ideale.

L'analisi di sensibilità è stata eseguita per i seguenti parametri:

- temperatura di serbatoio: fra 190 e $250^{\circ} \mathrm{C}$;
- portata media di ciascuno dei pozzi produttivi: da 100 a $325 \mathrm{t} / \mathrm{h}$;
- profondità media dei pozzi: da 1000 a 2500 m ;
- rapporto di successo dei pozzi: 1/1; 2/3; 1/2;
- tasso di sconto: dal 5 al 15%.

La portata necessaria per produrre 5 MW sia per la centrale a condensazione che per quella a contropressione è riportata in tabella Al.1; questa informazione permette di calcolare il numero dei pozzi produttivi necessari in base al valore ipotizzato per la portata media di ciascun pozzo. La condizione di single flash è stata scelta in modo che la temperatura di flash sia la media aritmetica fra la temperatura di serbatoio e:

- la temperatura di condensazione di $45{ }^{\circ} \mathrm{C}$ (pressione di condensazione 0.10 bar)
- oppure la temperatura di $100{ }^{\circ} \mathrm{C}$, per l'unità a contropressione.

A1.3. Valutazione dei costi

A1.3.1. Costi di investimento per i casi base

Esplorazione di superficie: Si considera che il costo globale di tutte le attivita di esplorazione di superficie (che includono investigazioni geologiche, geochimiche e geofisiche) sia pari a 500,000 USS. Questa somma è considerata la stessa in tutti i casi e potrebbe raggiungere un massimo di 800,000 US\$.

Perforazioni profonde: Il numero dei pozzi profondi da perforare è stato valutato considerando:

- il numero di pozzi produttivi necessari,
- il rapporto fra il numero dei pozzi di re-iniezione e il numero dei pozzi produttivi,
- il rapporto di successo delle perforazioni.

Geotermica Itallana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
Nei casi base si ottiene quanto segue:

- Unita da 5 MW a contropressione;
portata necessaria $400 \mathrm{t} / \mathrm{h}$;
3 pozzi di produzione;
1 pozzo di re-iniezione;
1 pozzo sterile;
5 pozzi perforati in totale.
- Unità da 5 MW a condensazione;
portata necessaria $250 \mathrm{t} / \mathrm{h}$;
2 pozzi di produzione;
1 pozzo di re-iniezione;
1 pozzo sterile;
4 pozzi perforati in totale.
- Unita da 15 MW a condensazione;
portata necessaria $750 \mathrm{t} / \mathrm{h}$;
5 pozzi di produzione;
2 pozzi di re-iniezione;
3 pozzi sterili;
10 pozzi perforati in totale.
Il costo dei pozzi geotermici è calcolato in funzione della profondita, in base sia a dati pubblicati (Carson and Lin, 1981; Chappel et al., 1979; Howard, 1980) e opportunamente modificati per tenere conto del tasso di inflazione, sia alla esperienza personale della società Una stima approssimata dei costi di perforazione inclusivi delle prove di produzione preliminari è ottenibile dalla relazione (per profondita maggiori di 500 m):

$$
C=e(0.0007884 D+13.155)
$$

dove C è il costo in US\$ 1991 e D è la profondità in m.
Per i casi base il costo medio di ciascun pozzo (profondita 1500 m) è stimato in US $\$ 1,700,000$. Ne consegue che i costi totali di perforazione sono:

- 8,500,000 US\$ per l'unita da 5 MW a contropressione (totale 5 pozzi);
- 6,800,000 US\$ per l'unità da 5 MW a condensazione (totale 4 pozzi);
- 17,000,000 US\$ per l'unità da 15 MW a condensazione (totale 10 pozzi).

Ingegneria di serbatoio e sistema di adduzione-reiniezione (gathering system): la valutazione accurata dei costi del gathering system è difficile poichè dipende dalla morfologia del terreno. In prima approssimazione si è considerato:

- un costo di $450 \mathrm{US} \$ / \mathrm{m}$ per i vapordotti $(\phi=350 \mathrm{~mm})$ che collegano i pozzi produttivi alla centrale;
- un costo di $270 \mathrm{US} \$ / \mathrm{m}$ per le tubazioni $(\phi=200 \mathrm{~mm})$ che vanno ai pozzi di re-iniezione.
Si è considerato che l'impianto di separazione e la stazione di pompaggio abbiano un costo totale di 300,000 uS\$ per ciascun pozzo produttivo, mentre le spese per le prove di ingegneria di serbatoio sono state valutate in 50,000 uS\$ per ciascun pozzo produttivo.

Geotermica Italiana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
Costruzione e installazione della centrale: il costo di una centrale geotermoelettrica varia sensibilmente in funzione di differenti parametri quali: potenza, pressione di vapore in uscita, contenuto di gas, ecc.

Il costo di una centrale a contropressione da 5 MW può essere valutato in $3,000,000$ US\$. Considerando le operazioni di montaggio, opere civili, sottostazioni, ecc., il costo totale dovrebbe aggirarsi attorno ai 4,500,000 US\$.

La stima del costo di una centrale a condensazione da 5 MW è più difficile perchè questa non è una dimensione standard. E' stato pertanto considerato il costo delle unita geotermiche standard a condensazione da 35 e 55 MW (Laxmidas e Popat, 1988) e si è utilizzato un fattore di scala per tener conto della diversa potenza. In base a queste ipotesi, il costo di una unita a condensazione da 5 MW inclusiva delle torri di raffreddamento dovrebbe essere di circa 12,500,000 US\$.

Analogamente il costo di una centrale geotermica a condensazione da 15 MW è stato valutato in 26,000,000 US\$.

Mitigazione dellimpatto ambientale: del costo delle tubazioni di re-iniezione e della stazione di pompaggio si è gia detto. Si assume che non vi sia nessun costo addizionale per abbattimento di gas incondensabili e altri potenziali inquinanti atmosferici. Bisogna sottolineare che le unita a contropressione producono un pennacchio ben visibile che può causare un impatto paesaggistico.

A1.3.2. Costi operativi e di manutenzione

Manutenzione straordinaria: in questa voce si considerano le spese per la perforazione dei 'nuovi' pozzi, cioè dei pozzi che sono necessari per mantenere il valore richiesto della portata di fluido geotermico nel corso della vita della centrale geotermoelettrica. Il numero di questi 'nuovi' pozzi ed il momento in cui è necessaria la loro perforazione sono stati valutati assumendo un declino della portata di fluido geotermico del 3% su base annua. Nel condurre questa valutazione si è considerato che è disponibile sempre un eccesso di produzione, sicché la centrale geotermoelettrica può sempre operare a pieno carico. Prima del declino della produzione sotto la portata richiesta, un 'nuovo' pozzo produttivo viene perforato per risalire al di sopra di tale valore. Nei casi base, la perforazione di un 'nuovo' pozzo è necessaria

- al nono anno per l'unità a contropressione da 5 MW
- al dodicesimo anno per l'unità a condensazione da 5 MW
- all'ottavo e al dodicesimo anno per l'unita a condensazione da 15 MW .

Costi di manutenzione ordinaria: la natura dei serbatoi geotermici generalmente garantisce un rifornimento continuo e prolungato alla centrale, che puo operare con un fattore di carico di circa 85-95\%, corrispondente a 7500-8300 ore/anno. Per questa ragione, sono in genere possibili la

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

automatizzazione ed il controllo remoto della centrale geotermoelettrica, il cui funzionamento richiede percio un personale limitato. La automatizzazione ed il controllo remoto sono particolarmente vantaggiosi nel caso in cui le caratteristíche del campo geotermico impongono la costruzione di diverse e relativamente piccole unità di produzione.

D'altro lato, il vapore geotermico, per sua natura, trasporta impurezze e contiene composti chimici. Questo fatto comporta (anche nel caso di centrali alimentate in maniera indiretta) la revisione periodica delle parti meccaniche, in particolare delle pale delle turbine. Tale revisione avviene mediamente ogni $8,000-10,000$ ore di operazione, ma l'interruzione è generalmente molto breve, dell'ordine di alcuni giorni.

Il costo del personale necessario ad operare la centrale geotermoelettrica può diventare rilevante per centrali di piccola potenza. I normali costi operativi per centrali geotermoelettriche di alta potenza sono di circa 57 millesimi di US\$ per kWh prodotto.

Nel nostro caso i costi operativi inclusivi della manutenzione ordinaria sono stati stimati in circa 550,000 us\$/anno per le unita da 5 MW e in circa 700,000 US\$/anno per l'unita da 15 MW .

A1.3.3. Costi finanziari

Non è facile fornire numeri reali relativi ai costi finanziari globali, poichè non solamente la dimensione di una centrale geotermoelettrica ma anche le tasse, il tasso di interesse ed il periodo di ammortamento legale varia grandemente da un progetto all'altro.

Come già detto è stato eseguito un approccio economico assumendo:

- nessuna tassa
- un tasso di sconto reale (del 10% nel caso base)
- una durata del progetto di 20 anni.

A1.3.4. Tempi

I costi di esplorazione superficiale sono riferiti all'anno 0.

La perforazione di ciascun pozzo richiede un tempo di 4 mesi e i pozzi vengono eseguiti con un'unica sonda di perforazione.

L'ordine della centrale geotermoelettrica avviene dopo la perforazione di 3 pozzi, cioè 1 anno dopo l'inizio del progetto.

Ia costruzione e l'installazione della centrale e del gathering system richiede 2 anni dall'ordine.

L'esborso del capitale va di pari passo con la esecuzione dei lavori.

Geotermica Italiana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
A1.4. Costo della generazione geotermoelettrica diretta: casi base e analisi di sensibilita

Il costo del kWh nei casi base considerati è il seguente:
centrale da 5 MW a contropressione:
7.55 US\& / kWh di cui

- 4.05 US\& / kWh per costi di campo (esplorazione, perforazione, manutenzione straordinaria), - 2.65 US\& / kWh per costi di superficie (gathering system, centrale elettrica),
- 0.85 US¢ / kWh per costi di manutenzione ordinaria.

Centrale da 5 MW a condensazione:
7.97 USC / kWh di cui

- 2.83 US\& / kWh per costi di campo,
- 4.29 US\& / kWh per costi di superficie,
- 0.85 US\& / kWh per costi di manutenzione ordinaria.

Centrale da 15 MW a condensazione:
5.65 US $¢ / \mathrm{kWh}$ di cui

- 2.17 USC / kWh per costi di campo,
- 2.91 US\& / kWh per costi di superficie,
- 0.57 US\& / kWh per costi di manutenzione ordinaria.

La sensibilita del costo del kWh alle differenti variabili considerate può essere valutata esaminando gli spider plots di Fig. A1.1, A1. 2 e A1.3, nei quali il punto centrale si riferisce a ciascuno dei casi base.

In ascissa sono riportati i valori considerati di ciascuna variabile indipendente in termini di differenza percentuale rispetto al valore del caso base. Ciascuna linea sullo spider plot mostra come varia il costo del kWh in risposta alle variazioni di ciascuna variabile indipendente, mentre le altre variabili indipendenti rimangono costanti. Quanto più è ripida la linea, tanto più il costo del kWh è sensibile a quella variabile.

La temperatura del serbatoio è la variabile che determina le maggiori variazioni nel costo del kWh prodotto.

Il costo del kWh generato dalle unita da 5 MW , nei casi base, è di circa 7.5 US¢ per la centrale a contropressione e di circa 8 US\& per quella a condensazione.

La scelta fra questi due possibili tipi di centrale dipende essenzialmente dalle condizioni del serbatoio geotermico. L'esame delle Fig. Al.1 e Al. 2 dimostra chiaramente che un aumento della temperatura di serbatoio favorisce l'unita a contropressione, mentre nel caso di un serbatoio più profondo l'unita a condensazione è più competitiva. In generale, dal punto di vista dei costi di investimento, l'unità a contropressione ha costi di perforazione più elevati, mentre l'unita a condensazione richiede maggiori investimenti per la centrale.

Bisogna sottolineare che le unità a condensazione sfruttano i fluidi geotermici più efficientemente, pertanto,

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
in una prospettiva a lungo termine, questa soluzione risulta essere la più vantaggiosa.

Nell'ottica di una societa che decida di produrre in Italia energia geotermoelettrica, per venderla all'ENE al prezzo di 12.5 US\&/kWh (pari a 150 Lit/kWh, vedi Introduzione), è evidente che i costi di generazione possono essere considerati economicamente interessanti solo se sufficientemente inferiori a tale cifra. Anche se questo vincolo economico è abbastanza flessibile, dipendendo dalle scelte soggettive dell'operatore ipotetico, ci sembra quindi ragionevole considerare economicamente sfruttabili, per fini di generazione geotermoelettrica diretta, quelle risorse geotermiche localizzate a profondita inferiori a $3 \mathrm{~km} e \mathrm{di}$ temperatura $\geq 20{ }^{\circ} \mathrm{C}$.

Reservoli Temperature ${ }^{\circ} \mathrm{C}$	Flash Temperature Back Pressufe ${ }^{\circ} \mathrm{C}$	Flash Temperature Condensing ${ }^{\circ} \mathrm{C}$	Flash' Pressure Back Pressure BaI	Flash Pressure Condensling Bar	Steam Flow to Produce 5 MW Back Pressure T/H	Steam Flow to Produce 5 MW Condensing T/H	Tolal Flow From Wells Back Pressure T/H	Total Flow From Wells Condensing T/H
250	175,8	162	9,1	5 ;	64,1.	42,3	304	200
230	166	143,5	7.2	4	71,8	45	397	249
210	156	133,5	5.6	3	82,1	48,9	720	313.5
190	146	123.2	4.3	2,2	97,1	. 54,1	1079	410

Tab. A1.1. Portata di fluido geotermico necessaria per produrre 5 MW sia per la centrale a condensazione che per quella a contropressione.

Fig. A1.1. Sensibilità del costo del kWh alle differenti variabili considerate nel caso di una centrale da 5 MW a contropressione.

Fig. A1.2. Sensibilità del costo del kWh alle differenti variabili considerate nel caso di una centrale da 5 MW a condensazione.

Fig. A1.3. Sensibilità del costo del kWh alle differenti variabili considerate nel caso di una centrale da 15 MW a condensazione.

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

APPENDICE 2. ANAIISI ECONOMICA DI UN PROGETTO DI GENERAZIONE GEOTERMOELETTRICA MEDIANTE CICLO BINARIO.

A2.1. Introduzione

Questa analisi economica è stata eseguita seguendo la stessa procedura dell'Appendice 1, alla quale si rimanda per la maggior parte dei dettagli, mentre in questa Appendice 2 sono commentate solamente le caratteristiche più specifiche del caso in esame.

A2.2. Ipotesi di base per la valutazione del costo totale della generazione geotermoelettrica mediante ciclo binario

L'analisi economica è stata eseguita considerando il seguente caso base:

- serbatoio geotermico ad acqua dominante
- temperatura del serbatoio: $130{ }^{\circ} \mathrm{C}$
- profondita media dei pozzi: 800 m
- rapporto di successo dei pozzi (produttivi/perforati): 2/3
- portata media di ciascuno dei pozzi produttivi: 200 t/h
- rapporto fra pozzi di re-iniezione e pozzi produttivi: 1/3
- distanza media fra pozzi produttivi e pozzi di reiniezione: 500 m
- distanza media fra pozzi produttivi e centrale geotermoelettrica: 500 m
- durata del progetto: 20 anni
- declino medio della produzione: 3\%/anno
- potenza della centrale geotermoelettrica: 5 MW .

L'analisi di sensibilità è stata eseguita per i seguenti parametri:

- temperatura di serbatoio: fra 110 e $170{ }^{\circ} \mathrm{C}$;
- portata media di ciascuno dei pozzi produttivi: da 100 a $300 \mathrm{t} / \mathrm{h}$;
- profondità media dei pozzi: da 500 a 2000 m ;
- rapporto di successo dei pozzi: 1/1; 2/3; 1/2;
- tasso di sconto: dal 5 al 15%.

La portata di liquido geotermico (a temperatura nota) necessaria per produrre 5 MW mediante la centrale a ciclo binario è stata valutata facendo riferimento al grafico di Fig. A2.1 e considerando che l'acqua di raffreddamento abbia una temperatura di $10{ }^{\circ} \mathrm{C}$. Nel caso base si tratta di 910 t/h. Si è inoltre assunto che il raffreddamento del liquido geotermico fra il serbatoio e la centrale sia trascurabile.

Il numero dei pozzi produttivi necessari è stato poi calcolato in base:

- alla portata di liquido geotermico necessaria,
- al valore ipotizzato per la portata media di ciascun pozzo (200 t/h nel caso base)

Geotermica Itallana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
A2.3. Valutazione dei costi

A2.3.1. Costi di investimento per i casi base

Esplorazione di superficie: $S i$ è considerato che il costo globale di tutte le attivita di esplorazione di superficie (geologia, geochimica e geofisica) sia pari a 300,000 US\$. Questa somma è considerata la stessa in tutti i casi.

Perforazioni profonde: Anche in questo caso il numero dei pozzi profondi da perforare è stato valutato considerando:

- il numero di pozzi produttivi necessari,
- il rapporto fra il numero dei pozzi di re-iniezione e il numero dei pozzi produttivi,
- il rapporto di successo delle perforazioni.

Nel caso base si ottiene:

- portata necessaria 910 t/h;

5 pozzi di produzione;
2 pozzi di re-iniezione;
3 pozzi sterili;
10 pozzi perforati in totale.
Il costo dei pozzi geotermici è calcolato come specificato nell'Appendice 1. Nel caso base il costo medio di ciascun pozzo (profondità 800 m) è stimato in US $\$ 970,000$. I costi totali di perforazione sono pertanto di 9,700,000 US\$.

Ingegneria di serbatoio e gathering system: per il gathering system si è considerato un costo di $250 \mathrm{US} \$ / \mathrm{m}$ per tutte le tubazioni ($\phi=250 \mathrm{~mm}$) .
I costi della stazione di pompaggio e le spese per le prove di ingegneria di serbatoio sono stati valutati in 100,000 us\$ per ciascun pozzo produttivo.

Costruzione e installazione della centrale: il costo di una centrale a ciclo binario da 5 MW , comprensivo della sua installazione, è stato valutato in 6,500,000 US\$. Tale costo, che include anche quello dello scambiatore di calore liquido geotermico/liquido organico, è stato mantenuto costante in tutti i casi esaminati. Anche se le dimensioni e quindi il costo dello scambiatore variano in funzione della portata di fluido geotermico necessaria, si è considerato che tali variazioni non incidano significativamente sul costo globale della centrale.

Mitigazione dell'impatto ambientale: si valuta che non vi sia nessun costo addizionale oltre a quello delle tubazioni di re-iniezione e della stazione di pompaggio di cui si è già detto.

A2.3.2. Costi operativi e di manutenzione

Manutenzione straordinaria: nel caso base, la perforazione dei 'nuovi' pozzi (cioè dei pozzi necessari per mantenere il valore richiesto della portata di fluido geotermico,

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
considerando un suo declino del 3% su base annua) è prevista al quarto, decimo e diciasettesimo anno.

Costi di manutenzione ordinaria: i costi operativi inclusivi della manutenzione ordinaria sono stati stimati in circa 550,000 US\$/anno.

A2.3.3. Costi finanziari

Come in Appendice 1, si è assunto che nessuna tassa gravi sul progetto, la cui durata è di 20 anni. Nel caso base si è considerato un tasso di sconto del 10\%.

A2.3.4. Tempi

Sono state considerate per lo più le stesse ipotesi di Appendice 1, ossia:

- costi di esplorazione superficiale riferiti all'anno 0,
- pozzi eseguiti con un'unica sonda di perforazione,
- ordine della centrale geotermoelettrica dopo la perforazione di 4 pozzi, cioè 1 anno dopo l'inizio del progetto,
- tempo per costruzione e installazione della centrale e del gathering system: 2 anni dall'ordine - esborso del capitale di pari passo con la esecuzione dei lavori.

Si è invece considerato che il tempo necessario per la perforazione di un pozzo sia di 3 mesi (anzichè i 4 di Appendice 1) a causa delle minori profondita.

A2.4. Costo della generazione geotermoelettrica mediante ciclo binario: caso base e analisi di sensibilita

Il costo del kWh nel caso base considerato è di 7.07 US $¢ / \mathrm{kWh}$ di cui

- 3.91 US\& / kWh per costi di campo (esplorazione, perforazione, manutenzione straordinaria), - 2.36 US¢ / kWh per costi di superficie (gathering system, centrale elettrica),
- 0.80 US\& / kWh per costi di manutenzione ordinaria.

Lo spider plot di Fig. A2.2 (nel quale il punto centrale si riferisce al caso base) permette di valutare la sensibilita del costo del kWh alle differenti variabili considerate.

Le maggiori variazioni nel costo del kWh prodotto sono causate dalla temperatura e dal tasso di sconto.

Ammettendo che i costi di generazione siano economicamente interessanti se sufficientemente inferiori al prezzo di cessione all'ENEL (12.5 US\& /kWh pari a 150 Lit/kWh) è ragionevole considerare economicamente

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
sfruttabili mediante ciclo binario quelle risorse geotermiche localizzate a profondita inferiori a $1.5 \mathrm{~km} e \mathrm{di}$ temperatura compresa fra poco più di $100^{\circ} \mathrm{C}$ e $200^{\circ} \mathrm{C}$

Fig. A2.1. Diagramma di correlazione fra temperatura del fluido inviato in una centrale a ciclo binario ORMAT ed energia specifica prodotta.

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

Appendice $3 . \quad$ VAlutazione del flusso termico convettivo NATURALE PER SORGENTI E POZEI TERMALI.

In questa appendice viene valutato il flusso termico convettivo naturale per le sorgenti ed i pozzi termali con $30 \leq T \leq 100{ }^{\circ} \mathrm{C}$, classificabili come riserve geotermiche di categoria C, di cui è nota sia la portata sia la temperatura.

Come già specificato nel paragrafo 2.1 .1 , la potenza geotermica convettiva, viene calcolata in base alla portata massica ($Q, \mathrm{~g} / \mathrm{s}$), al calore specifico ($\mathrm{C}=4.186 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$) ed alla temperatura ($\mathrm{T},{ }^{\circ} \mathrm{C}$) del liquido scaricato alla superficie, utilizzando la relazione seguente:

$$
W=Q c\left(T-T_{0}\right)
$$

dove T_{0} viene convenzionalmente considerato uguale a $25^{\circ} \mathrm{C}$.
I risultati sono riportati in Tabella A.3.1; nonostante l'incompletezza di questa tabella, derivante dalla mancanza del dato di portata per numerose manifestazioni termali, è interessante osservare che:

- la potenza geotermica convettiva globale è di 297 MWt;
- i pozzi dell'area euganea costituiscono, nel loro insieme, il 68 \% di questa potenza, mentre la sola sorgente termale dei Bagni di Saturnia ne spiega l'11\%.

Tab. A3.1. Potenza geotermica convettiva naturale per le sorgenti ed i pozzi termali con $30 \leq T \leq 100^{\circ} \mathrm{C}$, di cuì è nota sia la portata sia la temperatura.

	Provincia	Comune	Sorgente	T $\left({ }^{\circ} \mathrm{C}\right)$	Q (1/s)	W (kWt)
1	Aosta	Pre-Saint-Didier		36.5	2.0	96
2	Cuneo	Vinadio	Bagni I-2B	48.0	$7.0 \mathrm{E}-1$	67
3	Cuneo	Valdieri	Terme II-1D	48.8	$9.0 \mathrm{E}-1$	90
4	Cuneo	Valdieri	Terme II-2	63.0	1.3	207
5	Cuneo	Valdieri	Terme II-3D	60.4	3.5	519
6	Cuneo	Valdierd	Terme II-4	55.4	5.0E-1	64
7	Alessandria	Acqui Terme	La Bollente	70.5	8.5	1619
8	Alessandria	Acqui Terme	Lago delle sorgenti	56.0	6.7	869
9	Sondrio	Valdidentro	San Martino	37.4	20.0	1038
10	Sondrio	Valdidentro	Cinlaccia	38.1	2.0	110
11	Sondrio	Valdidentro	Pliniana	36.6	1.0	49
12	Sondrio	Valdidentro	Zampillo	37.0	8.0E-1	40
13	Sondrio	Valdidentro	Ostrogoti	35.1	5.0E-1	21
14	Sondrio	Valdidentro	Nibelunghi	36.1	$2.0 \mathrm{E}-1$	9
15	Sondrio	Valdidentro	Bagni Romani	36.8	20.0	988
16	Sondro	Valdidentro	Cassiodora	37.1	15.0	760
17	Sondrio	Valmasino	Bagni del Masino	38.0	1.0	54
18	Brescia	Sirmione	Grotte di Catullo	65.0	3.0	502
19	Padova	AREA EUGANEA	Insieme pozzi	73.0	1000.0	200928
20	Venezia	S.Michele al Tagl.	Pozzo N. 2	43.2	1.8	137
21	Udine	Latisana	Pozzo N. 5	35.0	1.0	42
22	Udine	Latisana	Pozzo N. 6	39.0	2.3	135
23	Udine	Latisana	Pozzo N. 7	40.6	4.0	261
24	Parma	Corniglio	Pozzo Miano	39.8	2.5	155
25	Bologna	Porretta Terme	Bove	35.5	1.8	79
26	Bologna	Porretta Terme	Donzelle	35.0	5.0E-1	21
27	Bologna	Porretta Terme	Leone	36.0	5.0E-1	23
28	Bologna	Porretta Terme	Marte	36.0	1.3	60
29	Forli	Bagno di Romagna	Insieme sorgenti	45.0	12.5	1046
30	Lucca	Pieve Fosciana	Prà di Lama	38.0	2.0	109
31	Lucca	Bagni di Lucca	Doccione A	54.0	3.0E-1	36
32	Lucca	Bagni di Lucca	Bagno alla Villa	39.0	9.0F-1	53
33	Lucca	Bagni di Lucca	Docce Basse	33.0	$6.0 \mathrm{E}-1$	20
34	Lucca	Bagni di Lucca	Varraud	34.0	5.0E-1	19
35	Lucca	Bagni di Lucca	Cova	35.0	$4.0 \mathrm{E}-1$	17
36	Lucca	Bagni di Iucca	Bernabd A	38.4	$3.0 \mathrm{E}-1$	17
37	Lucca	Bagni di Lucca	Demidoff	45.0	$7.0 \mathrm{E}-1$	59
38	Lucca	Bagni di Lucca	Bagno S.Giovanni	38.0	$5.0 \mathrm{E}-1$	27
39	Pistoia	Montecatini Terme	Leopoldina	32.5	9.0	283
40	Pisa	S.Giuliano Terme	di Ponente	39.5	12.0	728
41	Pisa	S.Giuliano Terme	Bagni di Levante	40.5	150.0	9732
42	Pisa	Casciana Terme	Bagni	35.0	60.0	2512
43	Siena	Asciano	Bagni Montalceto	33.0	$5.0 \mathrm{E}-1$	17
44	Siena	Radicondoli	Bagni Galleraie	30.0	2.0	42
45	Siena	Murlo	Bagnoli Montisi	34.0	10.0	377

Tab. A3.1. (segue)

	Provincia	Comune	Sorgente	T (${ }^{\circ} \mathrm{C}$)	Q (1/s)	W (kWt)
43	Siena	Asciano	Bagni Montalceto	33.0	5.0E-1	17
44	Siena	Radicondoli	Bagni Galleraie	30.0	2.0	42
45	Siena	Murlo	Bagnoli Montisi	34.0	10.0	377
46	Siena	Murlo	Acqua del Doccio	37.0	1.5	75
47	Siena	Monticiano	Molino del Tifo	37.0	$3.0 \mathrm{E}-1$	15
48	Siena	Monticiano	Bagni Petriolo	42.0	3.0	213
49	Siena	S.Quirico d'Orcia	Bagno Vignoni	41.2	20.0	1356
50	Siena	S.Casciano Bagni	Montesano	36.5	$5.0 \mathrm{E}-1$	24
51	Siena	S.Casciano Bagni	Bagno Grande	41.5	17.0	1174
52	Siena	S.Casciano Bagni	Casetta Bagno G.	41.0	3.5	234
53	Siena	S.Casciano Bagni	Acqua Passante	36.5	$3.0 \mathrm{E}-1$	14
54	Siena	S.Casciano Bagni	Bagno Bossolo	38.5	1.2	68
55	Siena	S.Casciano Bagni	Acqua della Gora	42.5	2.3	168
56	Siena	S.Casciano Bagni	Santa Lucia	32.5	$7.0 \mathrm{E}-1$	22
57	Siena	S.Casciano Bagni	Sassone	38.0	1.5	82
58	Siena	S.Casciano Bagni	Podere Felsina	41.0	3.5	234
59	Siena	S.Casciano Bagni	Doccia Festa	42.0	6.5	463
60	Siena	S.Casciano Bagni	La Grotta	37.5	1.7	89
61	Siena	S.Casciano Bagni	Sant'Antonio	36.5	$2.0 \mathrm{E}-1$	10
62	Siena	S.Casciano Bagni	Bagno Tesya	42.0	2.8	199
63	Siena	S.Casciano Bagni	della Piscina	41.0	2.1	141
64	Siena	S.Casciano Bagni	Podere Pantano	35.0	$5.0 \mathrm{E}-1$	21
65	Siena	S.Casciano Bagni	Podere Piscina	41.0	1.5	100
66	Siena	S.Casciano Bagni	Bagno a Lotino	40.0	2.0	126
67	Siena	S.Casciano Bagni	Fosso Grossano	39.0	2.0	117
68	Siena	S.Casciano Bagni	Bagno Fraticelli	38.0	1.8	98
69	Siena	Siena	Acqua Borra	36.8	1.8	89
70	Siena	Castiglione d'Orcia	Bagni San Filippo	49.0	15.0	1507
71	Siena	Rapolano Terme	S.Giovanni	38.0	20.0	1088
72	Siena	Rapolano Terme	Madonna a Colle	30.8	1.5	36
73	Grosseto	Manciano	Bagni Saturnia	38.2	600.0	33153
74	Grosseto	Pitigliano	Valle Orentina	38.0	1.0	54
75	Grosseto	Monterotondo M.mo	Bagnolo	37.0	1.0	50
76	Grosseto	Monterotondo M.mo	Pelaghe	33.3	3.0	104
77	Grosseto	Grosseto	Caldanelle	35.0	10.0	419
78	Grosseto	Grosseto	Poggetti Vecchi	37.0	10.0	502
79	Grosseto	Grosseto	Bagno di Roselle	36.0	10.0	460
80	Viterbo	Montalto Castro	Pozzo Paglieto	39.0	1.5	88
81	Viterbo	Canino	Monte Doganella	47.0	1.3	120
82	Roma	Civitavecchia	Ficoncella	53.7	3.0	360
83	Roma	Tolfa	Bagnarello	44.5	3.0	245
84	Roma	Canale Monterano	Bagnarello	54.0	1.4	170

Tab. A3.1. (segue)

IL RUOLO DELL'ANIDRIDE CARBONICA NEI SISTEMI GEOTERMICI

 CARBONATICO-EVAPORITICI TOSCO-IAZIALILuigi Marini(1) e Giovanni Chiodini(2)

(1) Geotermica Italiana srl, Lungarno Mediceo 16, 56127 Pisa, Italia
(2) Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Universita, 06100 Perugia, Italia

Riassunto

Soluzioni acquose prossime alla saturazione sia rispetto ad anidrite e calcite sia rispetto a quarzo, albite, adularia, clorite e illite (cioè le fasi solide idrotermali che caratterizzano, nell'intervallo termico 180$300^{\circ} \mathrm{C}$, la maggior parte dei campi geotermici esplorati in profondità) hanno circolato in un passato più o meno remoto e/o stanno tuttora circolando all'interno dei serbatoi geotermici carbonatico-evaporitici della regione toscolaziale.

Questi sistemi geotermici sono attraversati da un notevole flusso di CO_{2} di provenienza profonda. I dati di $\delta^{13} \mathrm{C}$ suggeriscono che la CO_{2} che si scarica alla superficie nella regione è originata dal miscelamento fra una componente proveniente dal mantello ed una componente termometamorfica. La prima è più importante nella Toscana centro-meridionale, mentre la seconda è più importante nel Lazio settentrionale. Tuttavia a Larderello-Travale e Monte Amiata il contributo della CO_{2} termometamorfica è anomalmente elevato, probabilmente a causa di un innalzamento locale delle isoterme.

Le variazioni di PCO2, presumibilmente indotte da variazioni del flusso di CO_{2} di provenienza profonda, sono probabilmente più rapide delle variazioni di temperatura, e possono pertanto giocare un ruolo più importante della temperatura quale causa di deposizione o dissoluzione di calcite ed anidrite. I risultati di un modello di equilibrio fra soluzione acquosa (con contenuto di cloruro >0.03 mol/kg) e la paragenesi minerale costituita da anidrite, calcite, quarzo, albite, adularia, clorite ed illite indicano che, per Pcoz minore di una certa soglia (che dipende dal contenuto di cloruro e dalla temperatura) il sistema si può sigillare per precipitazione di calcite indotta da aumento di $P_{\mathrm{CO} 2}$, mentre per $\mathrm{P}_{\mathrm{CO} 2}$ maggiore di questa soglia il sistema si può sigillare per precipitazione di anidrite in seguito a diminuzione di P_{CO}.

La deposizione di anidrite o calcite può determinare, in un tempo relativamente breve (se riferito alla vita media di un sistema idrotermale), il totale sigillamento delle fratture lungo le quali circolano le soluzioni idrotermali, con conseguente arresto del flusso naturale di CO_{2}. Quest'ultimo può essere ristabilito sia da movimenti

Geotermica Italiana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
tettonici che determinano la riattivazione di vecchie fratture e/o l'apertura di nuove fratture, sia da fratturazione idropneumatica. In assenza di questi fenomeni di fratturazione, la deposizione di anidrite o calcite può provocare quindi la "morte" del serbatoio geotermico.

Questa fenomenologia ha la seguente implicazione, di notevole importanza pratica per la localizzazione di sistemi geotermici nella regione tosco-laziale:

- laddove in superficie è presente un aito flusso di CO_{2}, in profondita può essere presente un sistema geotermico attivo;
- laddove in superficie è presente un flusso di CO_{2} molto basso, in profondita non può essere presente un serbatoio geotermico attivo; se c'era è ormai stato sigillato.
In effetti, zone di alto flusso di CO_{2} (delimitabili in base alla distribuzione della P_{CO} nelle acque di circolazione poco profonda) ben corrispondono con l'estensione dei serbatoi geotermici di alta entalpia (Monte Amiata e Latera), media entalpia (Torre Alfina) e bassa entalpia (Viterbo).

Abstract

Aqueous solutions close to saturation with respect to anhydrite and calcite as well as with respect to quartz, albite, adularia, chlorite and illite (i.e. the hydrothermal solid phases which are typical, in the $180-300{ }^{\circ} \mathrm{C}$ range, of most geothermal fields explored at depth) circulated in a more or less remote past or are still circulating into the carbonate-evaporite geothermal reservoirs of Southern Tuscany and Northern Latium.

These geothermal systems are flushed by a remarkable flux of CO_{2} of deep provenance. Available $\boldsymbol{\delta}^{13} \mathrm{C}$ data suggest that the CO_{2} discharging at the surface in the region is originated by mixing of a mantle component and a thermometamorphic component. The first is dominant in Central-Southern Tuscany, whereas the second is prevalent in Northern Latium. At Larderello-Travale and Monte Amiata, however, the contribution of thermometamorphic CO_{2} is anomalously high, likely due to local uprising of isotherms.

The variations of PCo2, presumably caused by changes in the CO_{2} flux of deep provenance, are likely quicker than temperature variations. PCO2 can therefore play a role more important than temperature as cause of deposition or dissolution of calcite and anhydrite. The results of an equilibrium model between aqueous solution (with a chloride content $>0.03 \mathrm{~mol} / \mathrm{kg}$) and the mineral paragenesis made up of anhydrite, calcite, quartz, albite, adularia, chlorite and illite indicate that, for $P_{C O 2}$ values lower than a certain threshold (that depends upon chloride content and temperature) the system can be sealed by precipitation of calcite caused by a PCO2 increase. For PCO2 values higher than that threshold, instead, the system can be sealed by precipitation of anhydrite determined by a P_{CO} decrease.

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
The deposition of anhydrite or calcite can completely seai, in a relatively short time (if referred to the average life of a hydrothermal system), the fractures acting as circulation paths for the hydrothermal solutions. Thus the natural flow of CO_{2} is stopped. This can be restored both by: (1) tectonic movements, that determines the reactivation of old fractures and/or the opening of new fractures; (2) hydropneumatic fracturing. In the absence of these fracturing phenomena, the deposition of anhydrite or calcite can cause the "death" of the geothermal reservoir.

This phenomenology has the following implications, which are of remarkable practical importance for discovering new geothermal systems in Southern Tuscany and Northern Latium:

- an active geothermal system can be present at depth below a surface area of high CO_{2} flux;
- an active geothermal system can not be present at depth below a surface area of low CO_{2} flux; perhaps, it has already been sealed if it was present.
It must be stressed that there is a good correspondence between surface areas of high CO_{2} flux (outlined on the basis of P_{CO} distribution in shallow waters) and the areal extension of geothermal reservoirs of high enthalpy (Monte Amiata and Latera), medium enthalpy (Torre Alfina) and low enthalpy (Viterbo).

Introduzione

Nella regione tosco-laziale, corrispondente con l'Etruscan swell di Marinelli (1975), sono situati i più importanti campi geotermici italiani di entalpia alta (ossia Larderello-Travale, Monte Amiata, Latera e Cesano), media (Torre Alfina) e bassa (es. Viterbo).

Le rocce di copertura di questi campi geotermici sono costituite da unita alloctone in facies di flysch (Liguridi del Cretaceo inferiore - Eocene) e formazioni sedimentarie prevalentemente argillose (Neoautoctono del Miocene superiore - Quaternario).

In Toscana il serbatoio geotermico potenziale è rappresentato, dall'alto verso il basso:
(1) dalle formazioni carbonatico-evaporitiche e carbonatiche della Falda Toscana, prevalentemente dalle Anidriti di Burano più o meno trasformate in calcare cavernoso (Triassico superiore);
(2) dal complesso dei Cunei Tettonici (Pandeli et al. 1991), costituito dall'impilamento altamente variabile di sequenze sia carbonatico-evaporitiche sia clastiche (Triassico mediosuperiore), appartenenti alla parte basale della Falda Toscana, e di sequenze metamorfiche del basamento sottostante;
(3) dal basamento, costituito da filliti, micascisti e gneiss.

Nel Lazio settentrionale il serbatoio geotermico potenziale è costituito dalle sequenze carbonatiche e carbonatico-evaporitiche della Falda Toscana, inspessite da ripetuti sovrascorrimenti, mentre il basamento metamorfico

Geotermica Italiana
non è mai stato raggiunto dai pozzi geotermici, la cui profondità massima è prossima ai 5000 m .

L'intera regione tosco-laziale è stata interessata, dal Miocene superiore al Quaternario recente, da importante attività magmatica che è largamente responsabile delle anomalie termiche attuali (Barberi et al., 1971; Marinelli, 1975). L'attività magmatica è stata tipicamente intrusiva e di tipo acido-anatettico in Toscana, mentre il Lazio settentrionale è stato prevalentemente caratterizzato da vulcanismo alcalino-potassico sottosaturo in silice e da importanti collassi vulcano-tettonici.

Secondo Baldi et al. (1992), il diverso stile di attività magmatica potrebbe essere responsabile almeno in parte del differente sviluppo dei fenomeni di fratturazione, e conseguentemente della permeabilita, che distingue i campi geotermici della Toscana da quelli del Lazio:
(1) i primi sembrano appartenere ad un unico sistema idrotermale, anche se la irregolare distribuzione delle
fratture causa sensibili disomogeneità nella circolazione dei fluidi;
(2) i secondi, di modeste dimensioni, in genere hanno sede entro piccoli alti strutturali all'interno dei grandi collassi vulcano-tettonici; la fratturazione (e conseguentemente la permeabilita) è molto discontinua e spesso ridotta o preclusa da fenomeni di self-sealing.
Il presente lavoro ha il duplice proposito di fornire un contributo per la comprensione dei fenomeni self-sealing in questo particolare contesto geologico, caratterizzato da alti flussi di anidride carbonica e dalla diffusione di calcite e anidrite come minerali idrotermali, e di trarre da cio implicazioni geotermiche rilevanti.

Distribuzione di calcite e anidrite idrotermali nei sistemi geotermici tosco laziali

Calcite ed anidrite sono due minerali idrotermali comunemente presenti nei sistemi geotermici in un ampio intervallo di temperatura e P_{CO}. Calcite ed anidrite sono particolarmente diffusi nei sistemi geotermici di alta entalpia della regione tosco-laziale: Larderello-Travale (Marinelli, 1969; Cavarretta et al., 1980; 1982; Bertini et al., 1985), Latera (Cavarretta et al., 1985), Torre Alfina (Buonasorte et al., 1988) e Cesano-Sabatini (Funiciello et al., 1979; Cavarretta e Tecce, 1987).

Larderello

A Larderello anidrite e calcite sono presenti:

- sia nelle zone meno profonde e più periferiche del campo geotermico, nell'intervallo di temperatura 150-250 ${ }^{\circ} \mathrm{C}$, assieme a clorite, pirite e quarzo, mentre gli allumo-silicati sono assenti in queste zone (Cavarretta et al., 1982);
- sia nelle aree comprese fra la parte centrale del campo geotermico e le parti periferiche, nell'intervallo di temperatura $200-300{ }^{\circ} \mathrm{C}$, dove sono accompagnate da

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
clorite, pirite, quarzo, K-feldspato, mica potassica, ematite, titanite, wairakite e datolite (Cavarretta et al., 1982).
Nelle parti più centrali e più calde del campo geotermico, la calcite è invece assente, mentre l'anidrite e presente in associazione con K-feldspato, epidoto, titanite, clorite, quarzo, solfuri, wairakite, ematite e barite (Bertini et al., 1985). La presenza di epidoto e titanite e la assenza di calcite indicano valori di $P_{\text {CO2 }}$ relativamente bassi.
Localmente nei livelli più caldi di alcuni pozzi profondi sono presenti anche albite, anfibolo e clinopirosseno (Bertini et al., 1985).

Secondo Cavarretta et al. (1980) tutte queste fasi solide sarebbero state depositate da soluzioni acquose durante uno stadio precedente quello attuale a vapore dominante (come gia ipotizzato da Marinelli, 1969), ma in condizioni di temperatura similari a quelle odierne. Secondo Bertini et al. (1985) invece, la probabile presenza della fase liquida nelle microfratture (come suggerito dai valori del rapporto 'vapore / vapore + liquido' generalmente compresi fra 0.1 e 0.75; Bertrami et al., 1985) permetterebbe attualmente la deposizione di minerali idrotermali.

Monte Amiata

Nei pozzi profondi perforati al Monte Amiata (Bertini et al., 1985; Gianelli et al., 1988), le rocce del basamento metamorfico sono tagliate da vene entro le quali è in genere presente la paragenesi idrotermale albite + calcite + clorite + quarzo, \pm K-mica (o illite) \pm K-feldspato, a temperature di $250-350^{\circ} \mathrm{C}$. Più raramente è stata osservata la associazione epidoto + quarzo + albite + K-feldspato, a temperature prossime ai $350^{\circ} \mathrm{C}$. Il fatto che l'epidoto sia presente solamente a valori di temperatura decisamente elevati (si consideri che questa specie fa la sua comparsa in molti sistemi geotermici a circa $250{ }^{\circ} \mathrm{C}$, Bird et al., 1984) è probabilmente giustificato dalle alte Pco2 che prevalgono nella maggior parte del sistema geotermico (Bertini et al., 1985).

A quanto ci risulta, l'anidrite non è segnalata fra i minerali idrotermali incontrati entro le rocce del basamento metamorfico nei pozzi profondi del Monte Amiata.

Latera

A Latera, anidrite e calcite sono fasi autigeniche tipiche di ciascuno dei tre stadi di interazione acquaroccia riconosciuti (Cavarretta et al., 1985), ossia: - del primo stadio di "contact-metasomatism", caratterizzato dalla formazione di calcite e anidrite associate a silicati quali pirosseno diopsidico, granato grossularia, flogopite, wollastonite o monticellite;

- del secondo stadio idrotermale di alta temperatura, nel corso del quale si è verificato lo sviluppo di paragenesi a calcite e anidrite accompagnate da silicati quali $\mathrm{K}-$ feldspato, vesuviana, granato melanite, tormalina,

Geotermica Italiana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
anfibolo, epidoto e solfuri di ferro (sia pirite che pirrotina);

- dell'ultimo stadio idrotermale di temperatura minore, caratterizzato dalla presenza di calcite, anidrite, Kfeldspato, minerali argillosi (illite-celadonite) e solfuri (essenzialmente pirite).

Cesano

Calcite ed anidrite di deposizione idrotermale sono abbondanti anche nel campo geotermico di Cesano (Funiciello et al. (1979). A Cesano le mineralizzazioni a solfati si incontrano, in genere, nelle parti più superficiali dei pozzi, fino ad una profondità massima di circa 1400 m e sono perció ben lontano dai livelli evaporitici, anche se sono più abbondanti nei pozzi che penetrano tali livelli. Le fasi minerali a solfato sono prevalentemente gesso, nelle parti meno profonde dei pozzi (prime centinaia di metri) e anidrite a maggiore profondità. Nel pozzo Cesano-l il complesso piroclastico (da 0 a 1050 m di profondita) è tagliato da vene e venuzze di solfati alcalini (gorgheite, aftitalite, glazerite).Queste vene (che rappresentano l'ultimo episodio di circolazione-deposizione) sono rivestite da cristalli di calcite e si trovano anche a considerevole profondita, dove la calcite è generalmente la fase minerale prevalente. Localmente, le vene a carbonati e solfati tagliano mineralizzazioni precedenti ad adularia, solfuri e carbonati (ankerite, dolomite e calcite). L'epidoto è invece estremamente raro nei pozzi di Cesano, fatto non sorprendente alla luce delle alte PCO2 che prevalgono in questo sistema geotermico.

POzzo SH2 - Bracciano

Il pozzo SH2 (localizzato a circa 2 km dalla sponda settentrionale del lago di Bracciano) è stato perforato fino a circa 2500 m di profondita senza che siano stati incontrati fluidi suscettibili di sfruttamento, sebbene siano state misurate temperature elevate, fino ad un massimo di $290^{\circ} \mathrm{C}$ a fondo pozzo.

Cavarretta e Tecce (1987) hanno riconosciuto i seguenti tre stadi di formazione dei minerali autigenici:

- un primo stadio probabilmente metasomatico
- un secondo stadio idrotermale di alta temperatura
- un terzo stadio idrotermale di temperatura minore.

Fra i minerali di neoformazione la calcite (che compare a 170 m di profondita) e l'anidrite (che appare a 870 m di profondità) sono presenti pressochè ovunque, assieme alla pirite. Tuttavia queste fasi sono tipiche del secondo e del terzo stadio di mineralizzazione e la deposizione di calcite e anidrite è dominante rispetto a quella di tutti gli altri minerali nell'ultimo stadio. Cavarretta e Tecce (1987) sottolineano che quest'ultimo stadio è virtualmente attivo tutt'oggi e, sigillando prontamente le fratture, "uccide" ogni tentativo della tettonica di aumentare la permeabilita.

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

Osservazioni conclusive relative alla distribuzione

 di calcite ed anidriteAltre indicazioni, relative alla possibile presenza di calcite ed anidrite idrotermale entro i serbatoi geotermici della regione tosco-laziale, provengono dalle caratteristiche chimico-fisiche delle soluzioni acquose. L'applicazione di programmi di calcolo (quali WATEQ, Truesdell e Jones, 1974; EQ3, Wolery, 1979; WATCH3, Arnorsson et al., 1982), che ricostruiscono la composizione della soluzione acquosa alla temperatura che interessa e calcolano gli indici di saturazione rispetto ai principali minerali idrotermali, ha permesso di verificare che sono sature (o prossime alla condizione di saturazione) rispetto a calcite ed anidrite:

- le soluzioni acquose incontrate nei pozzi Latera 2, Latera 3D, Latera 4 e Latera SHG1 (Cavarretta et al., 1985; Gianelli e Scandiffio, 1989);
- le acque dei pozzi geotermici di Torre Alfina (Buonasorte et al., 1988).

Si può quindi concludere che all'interno dei serbatoi geotermici carbonatico-evaporitici della regione toscolaziale hanno circolato in un passato più o meno remoto, e/o stanno tuttora circolando, soluzioni acquose prossime alla saturazione sia rispetto ad anidrite e calcite sia rispetto alle fasi solide idrotermali (quali quarzo, albite, adularia, clorite, muscovite o illite) che caratterizzano, nell'intervallo termico $180-300{ }^{\circ} \mathrm{C}$, la maggior parte dei campi geotermici esplorati mediante perforazioni profonde. Da segnalare infine che nelle parti più centrali e più calde del campo geotermico di Larderello, e localmente all'Amiata, è assente la calcite mentre fa la sua comparsa l'epidoto a causa delle P_{CO} relativamente basse.

Origine dell'anidride carbonica

L'origine della CO_{2} emessa da aree geotermiche, sorgenti fredde, sorgenti termali e manifestazioni a gas localizzate nella regione tosco-laziale puó essere investigata facendo riferimento alle numerose misure di $\delta^{13} \mathrm{C}$ della CO_{2} (Fig. 1) eseguite da Panichi e Tongiorgi (1975). Questi autori presentano anche un considerevole numero di dati relativi a travertini che, a causa della ambiguità inerente alla loro interpretazione, sono probabilmente destinati ad oscurare invece che chiarire il soggetto che ci proponiamo di investigare. Fertanto i dati relativi ai travertini non vengono considerati nella discussione seguente.

Panichi e Tongiorgi (1975), pur esaminando differenti processi in grado di spiegare i valori osservati del $\delta^{13} \mathrm{C}$ della CO_{2}, concludono che la sorgente principale della CO_{2} sarebbe l'idrolisi dei carbonati a temperature di circa 100$300{ }^{\circ} \mathrm{C}$, mentre le meno frequenti CO_{2} caratterizzate da valori più negativi del $\delta^{13} \mathrm{C}$ sarebbero, almeno in parte, $d i$ origine organica.

Geotermica Italiana

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

L'effettiva importanza dell'idrolisi dei carbonati, processo schematizzato dalla reazione seguente:
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}-->\mathrm{Ca}^{2+}+\mathrm{H}_{2} \mathrm{CO}_{3}$
è però alquanto dubbia, se si considera che per liberare l'acido carbonico è necessario l'intervento di un acido più forte che lo sposti dal sale. Acidi forti non sono, in genere, disponibili nei sistemi acquosi naturali, tranne pochi esempi fra i quali si ricordano le acque acide a solfati. Queste si originano per ingresso di gas idrotermali - magmatici in acque poco profonde o di superficie (dove lossigeno atmosferico determina la ossidazione ad acido solforico delle specie gassose dello zolfo, $\mathrm{H}_{2} \mathrm{~S}$ e/o SO_{2}) e si localizzano tipicamente al di sopra di acquiferi idrotermali o corpi magmatici in degassamento (Henley e Ellis, 1983). Pertanto al di fuori di ambienti molto particolari, l'idrolisi dei carbonati non puo spiegare lorigine di importanti quantita di CO_{2}, quali quelle che si scaricano alla superficie nella regione tosco-laziale.

Se si eccettua l'origine organica, almeno parziale, dei pochissimi campioni caratterizzati da valori di $\delta^{13} \mathrm{C}$ decisamente negativi, le due sorgenti principali della CO_{2} che si libera alla superficie nella stragrande maggioranza dei punti campionati sembrano invece essere:
(1) la decarbonatazione termometamorfica delle rocce carbonatiche, prevalentemente di età Mesozoica, presenti
nel sottosuolo,
(2) il degassamento del mantello terrestre.

La CO_{2} prodotta dal primo processo è debolmente positiva, come indicato dalle seguenti considerazioni:

- il fattore di frazionamento $1000 \ln \alpha_{\mathrm{CO}_{2}(\mathrm{~g})}$-calcite ha valori bassi alle temperature di termometamorfismo (2.59 a $600{ }^{\circ} \mathrm{C} ; 2.77$ a $500^{\circ} \mathrm{C} ; 2.67$ a $400{ }^{\circ} \mathrm{C}$; Ohmoto e Rye, 1979);
- la CO_{2} prodotta dalle reazioni termometamorfiche si allontana dalla zona di produzione in maniera quasi continua, cosicchè i frazionamenti isotopici sono intermedi fra quelli previsti dai modelli batch (o sistema chiuso o separazione in un unico stadio) e Rayleigh (o sistema aperto o separazione continua), come sottolineato da Valley (1986); poichè è improbabile che la frazione di CO_{2} rimanente nella roccia, F_{CO}, sia inferiore a 0.6 , i risultati dei due modelli sono confrontabili;
- ipotizzando che il valore medio del $\delta^{13} \mathrm{C}$ delle rocce carbonatiche interessate da termometamorfismo sia 0 \% (Faure, 1986; pag. 497), il $\delta^{13} \mathrm{C}$ della CO_{2} prodotta a 500 ${ }^{\circ} \mathrm{C}$ sarebbe compreso fra $2.77 \%\left(\mathrm{~F}_{2}=1\right)$ e $1.66 \%\left(\mathrm{~F}_{\mathrm{CO}_{2}}=\right.$ 0.6).

Tali risultati riferiti al sistema calcite- CO_{2} appaiono plausibili e generalizzabili, anche se le reazioni termometamorfiche coinvolgono molto probabilmente non solo carbonati ma anche silicati (Gianelli, 1985).

Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
Sebbene la composizione isotopica della CO_{2} proveniente dal mantello terrestre sia di difficile definizione, è ragionevole supporre che i valori compresi fra -4 e -8% siano rappresentativi di questa sorgente, come suggerito dal $\delta^{13} \mathrm{C}$:

- della CO_{2} estratta a temperature di $600-1200^{\circ} \mathrm{C}$ da MORB e OIB (Kyser, 1986);
- dei minerali carbonatici delle carbonatiti (Deines e Gold, 1973) ;
- dei diamanti (Deines, 1980), anche se il frazionamento isotopico del carbonio è possibile anche a temperature di $1200{ }^{\circ} \mathrm{C}$ (Bottinga, 1969).
La provenienza dal mantello di parte della CO_{2} tosco-laziale è in accordo con la presenza, in questa regione, di prodotti vulcanici recenti ad affinita carbonatitica, caratterizzati da risalita diretta e relativamente rapida dal mantello stesso.

Accettando l'ipotesi che la CO_{2} che si scarica alla superficie nella regione tosco-laziale sia per lo più originata dal miscelamento fra queste due sorgenti è interessante osservare che:

- la componente proveniente dal mantello è più importante nella Toscana centro-meridionale, dove si osservano $\delta^{13} \mathrm{C}$ generalmente compresi fra -4 e $-8 \% \%$ da sottolineare le anomalie di Larderello-Travale e Monte Amiata, dove sono stati riconosciuti $\delta^{13} \mathrm{C}$ solo debolmente negativi;
- la componente termometamorfica è più importante nel Lazio settentrionale, dove sono stati misurati $\delta^{13^{3}} \mathrm{C}$ compresi, in genere, fra -4 e $+2 \%$.
Queste osservazioni trovano una giustificazione nel diverso assetto strutturale: in Toscana le sequenze carbonatiche Mesozoiche, nonostante la complessita tettonica, non sono cosi spesse e non si incontrano a profondita cosi elevate come nel Lazio settentrionale. Pertanto, a parita di condizioni termiche, è verosimile pensare che la produzione di CO_{2} termometamorfica sia maggiore nel Lazio settentrionale che in Toscana. Ammettendo che il flusso di CO_{2} proveniente dal mantello sia grossolanamente uniforme in tutta la regione, il diverso contributo della sorgente termometamorfica determinerebbe un flusso totale di CO_{2} profonda maggiore nel Lazio settentrionale che in Toscana.
In questo contesto, le anomalie di Larderello-Travale e Monte Amiata sarebbero dovute alla maggiore produzione di CO_{2} termometamorfica, causata dall'innalzamento locale delle isoterme.

L'ipotesi che il flusso totale di CO_{2} profonda sia maggiore nel Lazio settentrionale che non in Toscana è confermato dalla distribuzione di calcite, epidoto e titanite idrotermali, che a temperature maggiori di circa $250{ }^{\circ} \mathrm{C}$ sono indicatori di PCO2 e di riflesso del flusso totale di CO_{2} profonda. In effetti nei serbatoi geotermici di Latera e Cesano la presenza di calcite e l'assenza di titanite ed epidoto indica alti valori di Pcoz, mentre la

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

abbondanza di epidoto e titanite a Larderello suggerisce PCO2 minori.

Il diverso flusso totale di CO_{2} profonda e le sue variazioni temporali hanno importanti implicazioni sugli equilibri che coinvolgono anidrite, calcite e soluzioni acquose, come vedremo nel seguito.

Fenomeni che causano la precipitazione di anidrite e calcite
E^{\prime} noto che la deposizione sia della calcite che dell'anidrite è favorita dal riscaldamento della soluzione acquosa satura rispetto a questi minerali, a causa della notevole diminuzione di solubilita che si verifica con l'aumento della temperatura (Holland e Malinin, 1979). Questo processo ha verosimilmente luogo nelle parti più periferiche dei sistemi geotermici, dove le acque di ricarica sono soggette a riscaldamento relativamente rapido (per esempio, nei pozzi geotermici di Reykjanes, Islanda, le maggiori concentrazioni di anidrite si osservano nelle zone in cui il gradiente di temperatura è più pronunciato; Tomasson e Kristmanndottir, 1972). Nelle parti più centrali dei serbatoi geotermici, dominate da moti di convezione, è invece probabile che le variazioni di temperatura a cui sono sottoposte le soluzioni acquose siano minori e relativamente più lente.

Un'altra variabile che deve essere considerata è la PCO2. Nel caso di una soluzione acquosa satura rispetto ad anidrite e calcite e contenuta entro un serbatoio geotermico, le variazioni di P_{CO} (presumibilmente indotte da variazioni del flusso di CO_{2} di provenienza profonda) sono probabilmente più rapide delle variazioni di temperatura, e possono pertanto giocare un ruolo più importante quale causa di deposizione o dissoluzione di questi minerali.

Per la maggior parte dei sistemi geotermici esplorati in profondita, se non per tutti, è stato accertato che essi sono attraversati da un flusso di CO_{2} di provenienza profonda in maniera del tutto similare al flusso di calore (Mahon et al., 1980); ciò è particolarmente vero per la regione tosco-laziale, come discusso nel paragrafo precedente.

Per valutare gli effetti delle variazioni di PCO2 (e temperatura) nei serbatoi geotermici tosco-laziali è conveniente fare riferimento alle soluzioni acquose in equilibrio, a condizioni di T e $P_{C O 2}$ fissate, con: albite, adularia, calcite, clinocloro, muscovite, anidrite, fluorite e quarzo. Si considera che tali fasi vincolino le attivita di $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Al}(\mathrm{OH})_{4}{ }^{-}, \mathrm{SO}^{2-}, \mathrm{F}^{-}$e $\mathrm{H}_{4} \mathrm{SiO}_{4}{ }^{\circ}$, rispettivamente, e che la attività dello ione bicarbonato sia fissata dalla P_{CO}.

Il buon accordo fra le composizioni osservate in molti sistemi naturali e le composizioni di equilibrio (Chiodini et al., 1991) autorizza l'utilizzo di queste per investigare

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

l'effetto delle variazioni di P_{CO} nei serbatoi geotermici tosco-laziali.

Per calcolare queste composizioni si utilizza un modello di equilibrio fra minerali e soluzione acquosa (Chiodini et al., 1991), che ha la stessa struttura computazionale di quello di Michard et al. (1981). Questo modello risolve cioè una equazione polinomiale della attivita dello ione idrogeno derivata considerando:

- l'equazione di elettroneutralità,
- le costanti termodinamiche degli equilibri di idrolisi delle fasi minerali di interesse, - la costante di Henry della CO_{2},
- le costanti termodinamiche degli equilibri di dissociazione delle specie acquose complesse.
Le specie acquose considerate sono: $\mathrm{H}_{2} \mathrm{O}^{\circ}, \mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{Na}^{+}$, $\mathrm{NaCl}{ }^{\circ}, \mathrm{NaSO}_{4}^{-}, \mathrm{NaCO}_{3}{ }^{-}, \mathrm{NaF}^{\circ}, \mathrm{NaOH}^{\circ}, \mathrm{K}^{+}, \mathrm{KCl}^{\circ}, \mathrm{KSO}_{4}{ }^{-}, \mathrm{KHSO}_{4}{ }^{\circ}$, $\mathrm{Ca}^{2+}, \mathrm{CaSO}_{4}{ }^{\circ}, \mathrm{CaCO}_{3}{ }^{\circ}, \mathrm{CaHCO}_{3}{ }^{+}, \mathrm{CaF}^{+}, \mathrm{CaOH}^{+}, \mathrm{Mg}^{2+}, \mathrm{MgSO}_{4}{ }^{\circ}$, $\mathrm{MgCO}_{3}{ }^{\circ}, \mathrm{MgHCO}_{3}{ }^{+}, \mathrm{MgF}^{+}, \mathrm{MgOH}^{+}, \mathrm{H}_{2} \mathrm{CO}_{3}{ }^{\circ}, \mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{F}^{-}$, $\mathrm{Cl}^{-}, \mathrm{H}_{4} \mathrm{SiO}_{4}{ }^{\circ}, \mathrm{H}_{3} \mathrm{SiO}_{4}^{-}, \mathrm{Al}(\mathrm{OH})_{4}{ }^{-}, \mathrm{Al}^{3+}, \mathrm{Al}(\mathrm{OH})^{2+}, \mathrm{Al}(\mathrm{OH})_{2}{ }^{+}$. I dati termodinamici sono stati ripresi dall'EQ3/6 software package (Wolery, 1983) per tutte le specie acquose e minerali, tranne che per il complesso $\mathrm{CaHCO}_{3}{ }^{+}$ed il quarzo. I dati di solubilità del quarzo provengono da Arnorsson et al. (1983), mentre la costante di dissociazione del complesso $\mathrm{CaHCO}_{3}{ }^{+}$è stata ripresa da Arnorsson et al. (1982).

Effetto della variazione di Pcon su soluzioni acquose in equilibrio con albite, adularia, calcite, clinocloro, muscovite, anidrite, fluorite e quarzo

Facendo riferimento, per esempio, ad una soluzione acquosa con contenuto di cloruro di $0.3 \mathrm{~mol} / \mathrm{kg}$ e temperatura di $200^{\circ} \mathrm{C}$, si osserva che, all'aumentare della Pco2, il pH rimane quasi costante $\left(\mathrm{pH}=5.17\right.$ per $\mathrm{P}_{\mathrm{CO} 2}=1$ bar, $\mathrm{pH}=5.14$ per $\mathrm{P}_{\mathrm{CO} 2}=100$ bar), essendo vincolato dall'equilibrio: $2 \mathrm{NaAlSi}_{3} \mathrm{O}_{8}+\mathrm{KAlSi}_{3} \mathrm{O}_{8}+2 \mathrm{H}^{+}=2 \mathrm{Na}^{+}+\mathrm{KAl}_{3} \mathrm{Si}_{3} \mathrm{O}_{10}(\mathrm{OH})_{2}+6 \mathrm{SiO}_{2}$
albite adularia muscovite quarzo e dalla condizione $\mathrm{m}_{\mathrm{Na}^{+}} \approx$ costante.

Si verifica pertanto un forte aumento di bicarbonato (Fig. 2), la cui curva di variazione rispetto alla PCo2 ha andamento rettilineo e pendenza vicina a +1 come richiesto dall' equilibrio:
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}$
dalla cui costante si ha:
$\log \mathrm{m}_{\mathrm{HCO}_{3}-}=\log \mathrm{P}_{\mathrm{CO} 2}+$ costante.
Il calcio declina fortemente, con curva di variazione rettilinea e pendenza vicina a -1 , essendo controliato dall'aumento del bicarbonato e dalla condizione di saturazione rispetto alla calcite
$\mathrm{CaCO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{HCO}_{3}{ }^{-}+\mathrm{Ca}^{2+}$
$\log \mathrm{m}_{\mathrm{Ca}^{2+}}=-\log \mathrm{m}_{\mathrm{HCO}_{3}-}+$ costante $=$
$=-\log \mathrm{P}_{\mathrm{CO} 2}+$ costante.
Geotermica Italiana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

Questo andamento del calcio e la condizione di saturazione rispetto alla anidrite
$\mathrm{CaSO}_{4}=\mathrm{SO}_{4}^{2-}+\mathrm{Ca}^{2+}$
$\log \mathrm{m}_{\mathrm{SO}_{4} 2-}=-\log \mathrm{m}_{\mathrm{Ca}^{2+}}+$ costante
spiegano la curva di variazione del solfato, la cui pendenza è prossima +1 , essendo:
$\log \mathrm{m}_{\mathrm{SO}_{4}{ }^{2-}}=\log \mathrm{P}_{\mathrm{CO} 2}+$ costante.
Da notare che, per queste condizioni di T, mCltot (Fig. 2):

- aumenti di PCO2 causano precipitazione di calcite e dissoluzione di anidrite e viceversa;
- le quantita di calcite che precipitano a causa di aumenti di P_{CO} sono definite dalla curva di variazione della molalità del calcio;
- le quantità di anidrite che precipitano a causa di diminuzioni di PCO2 sono definite dalla curva di variazione della molalita del solfato;
- per P_{CO} superiori a circa 5.6 bar, le moli di anidrite precipitate per diminuzione di P_{CO} sono maggiori delle moli di calcite disciolte;
-per PCO2 inferiori a circa 5.6 bar, invece, le moli di calcite precipitate per aumento di PCO2 sono maggiori delle moli di anidrite disciolte.
In altri termini, per $\mathrm{P}_{\mathrm{CO}}<5.6$ bar il sistema si può sigillare per precipitazione di calcite indotta da aumento di Pco2, mentre per $\mathrm{PCO}_{\mathrm{CO}}>5.6$ bar il sistema si può sigillare per precipitazione di anidrite in seguito a diminuzione di PCO2. Tuttavia, poichè il volume molare dell'anidrite (Vanidrite $\left.=46.9 \mathrm{~cm}^{3} / \mathrm{mol}\right)$ è 1.27 volte maggiore di quello della calcite ($V_{\text {calcite }}=36.8 \mathrm{~cm}^{3} / \mathrm{mol}$), il sigillamento per deposizione di anidrite (indotta da diminuzione di $P_{C O 2}$ si verifica al di sopra della soglia di $\mathrm{P}_{\mathrm{CO} 2}$ in corrispondenza della quale
$\mathrm{m}_{\mathrm{Ca}^{2+}} / \mathrm{m}_{\mathrm{SO}_{4}{ }^{2-}=1.27}$
Nel caso di una soluzione acquosa con contenuto di cloruro di 0.3 mol/kg, a $200{ }^{\circ} \mathrm{C}$, questa soglia di $\mathrm{P}_{\mathrm{CO} 2}$ è di circa 4.8 bar. Questo particolare valore di PCO2 (PCO2EQ in Fig. 2) in corrispondenza del quale il volume di anidrite depositata (o disciolta) è uguale al volume di calcite disciolta (o depositata), per piccole variazioni di PCo2, può essere considerato il valore di PCO2 ottimale per la "vita" del sistema, ossia perchè non si verifichino variazioni significative della sua porosita e conseguentemente della sua permeabilita.

Questa PCO2 ottimale varia al variare della temperatura e del contenuto di cloruro della soluzione (Fig. 3).

In particolare, nelle soluzioni acquose con contenuti di cloruro $\leq 0.03 \mathrm{~mol} / \mathrm{kg}(F i g .4)$, il contenuto di calcio è scarsamente dipendente dalla PCO, poichè lo ione Ca^{2+} è presente in contenuti subordinati a quelli del complesso $\mathrm{CaSO}_{4}{ }^{\circ}$ (in effetti la molalità del $\mathrm{CaSO}_{4}{ }^{\circ}$ è indipendente dalla $P_{\text {CO2 }}$, essendo fissata dalla costante di dissociazione del $\mathrm{CaSO}_{4}{ }^{\circ}$, dal prodotto di solubilita della anidrite e dai coefficienti di attivita di $\mathrm{Ca}^{2+}, \mathrm{SO}_{4}{ }^{2-}$ e $\mathrm{CaSO}_{4}{ }^{\circ}$). Inoltre la

Geotermica Itallana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

molalità del calcio è molto inferiore a quella del solfato, il cui logaritmo aumenta all'aumentare del $\log \mathrm{P}_{\mathrm{CO}}$ con pendenza prossima $a+1$, come nelle soluzioni acquose ricche di cloruro. Ne consegue che questi sistemi si possono sigillare solamente per precipitazione di anidrite indotta da diminuzione di P_{CO}.

Disponibilita di solfato e carbonato (anidride carbonica)

Nelle considerazioni precedenti, relative alla precipitazione di calcite o anidrite entro sistemi in equilibrio, si è assunto implicitamente che vi sia una disponibilita sufficiente dei costituenti di tali fasi: calcio, solfato e carbonato (anidride carbonica). Nei sistemi naturali tuttavia la disponibilità dei costituenti necessari alla formazione di una o più fasi minerali può non essere sufficiente. Nel caso in esame la disponibilita di solfato e carbonato puo essere valutata, almeno qualitativamente, mediante l'utilizzo di dati isotopici.

Rapporto isotopico $34 S / 32 s$ dell'anidrite idrotermale

Il rapporto isotopico ${ }^{34} \mathrm{~S} /{ }^{32} \mathrm{~S}$ di gesso e anidrite idrotermali provenienti dal pozzo Latera 1 sono compresi nell'intervallo da +12.8 a $+14.6 \%$ vs CDT, mentre per il pozzo Latera 2 è stato misurato un unico valore di $+14.4 \% 0$ (Cortecci et al., 1981a, 1981b). Secondo una comunicazione personale di Cortecci (citazione in Funiciello et al., 1979), i valori del rapporto isotopico ${ }^{34} S^{32}$ S dei solfati idrotermali del campo geotermico di Cesano hanno valori similari.

Questi rapporti isotopici sono confrontabili con quelli dei depositi evaporitici adriatici del Norico-Retico, o Anidriti di Burano (valore medio 16.1%, intervallo da 15 a 17.4%, secondo Cortecci et al. 1981c; valore medio 14.4%, intervallo da 13.5 a 15.3% secondo Paiotti, 1993).

A temperatura ambiente, gesso ed anidrite si arrichiscono solo debolmente in ${ }^{34} S$ rispetto al solfato acquoso : infatti $l^{\prime} \alpha_{g e s s o-s w ~ e ̀ ~ c i r c a ~}^{\text {g }}+1.65 \%$ (Thode e Monster, 1965), mentre il fattore di frazionamento è solo debolmente >1 per le anidriti che si depositano nel campo della halite tarda a $23.5{ }^{\circ} \mathrm{C}$ (Raab e Spiro, 1991). In base a ció, è verosimile supporre che il frazionamento della anidrite rispetto al solfato acquoso sia del tutto trascurabile a temperature elevate.

Pertanto è probabile che il solfato del gesso e dell'anidrite autigenici di Latera e di Cesano sia, per lo meno in gran parte, solfato triassico riciclato da ripetuti fenomeni di dissoluzione-precipitazione.

Valori del rapporto isotopico $34 \mathrm{~S} /{ }^{32} \mathrm{~S}$ decisamente inferiori a quelli delle evaporiti triassiche sono invece tipici del solfato magmatico nei basalti sottosaturi ricchi di alcali. Schneider (1970) riporta, per esempio, un valore medio di $+4.2 \%$, intervallo da $+2.5 \mathrm{a}+6.2 \%$, per i basalti

Geotermica Italiana

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
sottosaturi ricchi di alcali dell'Eifel, dell'Assia settentrionale e della Bassa Sassonia meridionale. Bisogna ricordare che Cavarretta e Lombardi (1990) hanno misurato valori del rapporto isotopico ${ }^{34} \mathrm{~S} /{ }^{32} \mathrm{~S}$ compresi fra +6.8 e $+10.8 \%$ nei cristalli di hauyna delle piroclastiti Sabatine; tuttavia tali fasi si sarebbero formate per "contact-metasomatic phenomena which developed at the periphery of shallow magmatic bodies" (Cavarretta e Lombardi, 1990) e il loro rapporto isotopico $34 \mathrm{~s} / 32 \mathrm{~S}$ non sarebbe pertanto rappresentativo del solfato magmatico.

Ben diverso è il punto di vista di Cavaretta e Tecce (1987). Secondo tali autori nel pozzo SH2, e possibilmente negli altri campi geotermici esplorati del Lazio, l'anidrite depositata entro fratture e cavita si sarebbe formata (per la maggior parte, se non tutta) a seguito della interazione di fluidi magmatici ricchi di CO_{2} e SO_{2} con rocce carbonatiche o con fluidi poco profondi di origine superficiale e ricchi di calcio. Tali autori basano la loro interpretazione sul fatto che nei pozzi della regione sabatina non vi è nessuna evidenza di una spessa sequenza evaporitica e danno poca importanza, peraltro senza addurre nessuna giustificazione, alla evidenza isotopica a favore della rimobilizzazione di solfato sedimentario triassico.

Accettando che il solfato dell'anidrite idrotermale di Latera e di Cesano sia, per lo meno in gran parte, solfato triassico riciclato è evidente che la disponibilità di questo costituente non è illimitata, ma condizionata da: (1) distribuzione delle evaporiti; (2) dissoluzione delle evaporiti; (3) circolazione delle soluzioni idrotermali; (4) meccanismi di precipitazione dell'anidrite idrotermale; (5) eventuale rimobilizzazione dell'anidrite idrotermale.

In effetti, nel campo geotermico di Larderello l'anidrite idrotermale (che secondo Cavarretta et al., 1980, si origina per rimobilizzazione dei costituenti minerali primari della formazione evaporitica, ipotesi plausibile che dovrebbe essere provata da dati relativi al rapporto isotopico ${ }^{34} \mathrm{~S} /{ }^{32} \mathrm{~S}$ della anidrite idrotermale) non si rinviene entro le rocce del presunto basamento metamorfico sottostanti le scaglie tettoniche (Franceschini, comunicazione verbale). Analogamente l'anidrite non è presente nelle paragenesi idrotermali incontrate entro le rocce del basamento metamorfico nei pozzi geotermici profondi del Monte Amiata.

Rapporto isotopico ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ della calcite idrotermale

E^{\prime} verosimile che il carbonato della calcite idrotermale della regione tosco-laziale derivi essenzialmente da CO_{2} profonda. Questa CO_{2}, migrando verso l'alto, entra nell'ambiente geotermico, dove viene in parte "bloccata" come costituente della calcite idrotermale (vedi discussione precedente).
E^{\prime} invece improbabile che il carbonato della calcite idrotermale della regione tosco-laziale abbia origine da dissoluzione delle rocce carbonatiche che costituiscono i litotipi primari in cui sono contenuti i serbatoi geotermici. In effetti, come dimostrato da Deines et al.

Geotermica Italiana

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

(1974), in condizioni di sistema aperto, ossia in presenza di un grande serbatoio di CO_{2} (come nel caso della regione tosco-laziale), la composizione isotopica della roccia carbonatica disciolta non influenza il rapporto ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ delle specie carbonatiche presenti in soluzione e quindi della calcite che precipita.

Purtroppo i dati disponibili (per esempio, Funiciello et al. (1979) sono compatibili con entrambe le ipotesi.

Tuttavia, accettando che il carbonato della calcite idrotermale della regione tosco-laziale derivi principalmente da CO_{2} profonda, è evidente che la disponibilita di questo costituente è praticamente illimitata in qualunque luogo del sistema geotermico permeato dalla CO_{2} di provenienza profonda. Pertanto la calcite idrotermale può formarsi pressochè ovunque, sempreché ci sia disponibilità di calcio e non ci siano condizioni di TrPCO2 tali da favorire la formazione degli allumo-silicati di calcio (per esempic l'epidoto) invece della calcite.

Implicazioni geotermiche

Tornando ad esaminare la Fig. 3, dove sono riportate sia le P_{CO} ottimali, sia le P_{CO} misurate nei pozzi geotermici L2, L3D, L4, G2 e SHG1 di Latera (Gianelli e Scandiffio, 1989), si osserva che queste ultime sono da 1 a 2 ordini di grandezza maggiori delle prime. Pertanto il sistema geotermico di Latera è suscettibile di sigillamento per precipitazione di anidrite indotta da diminuzione di PCO2. Il fatto che i pozzi geotermici produttivi di Latera sono disposti lungo una importante direttrice tettonicostrutturale (l'asse di una piega rovesciata che interessa la sequenza carbonatico-evaporitica mesozoica secondo Bertrami et al., 1984) può non essere casuale: in effetti, la circolazione idrotermale nel sistema geotermico di Latera potrebbe aver luogo solamente dove si producono sforzi tettonici che determinano la riattivazione di vecchie fratture e/o l'apertura di nuove fratture.
E^{\prime} interessante sottolineare che i fenomeni di sigillamento da anidrite (esempio pozzo SH2, Monti Sabatini) sono apparentemente più diffusi nei serbatoi carbonaticoevaporitici geotermici del Lazio che non in quelli Toscani, forse a causa delle maggiori PCO2, dovute ai maggiori flussi di CO_{2} profonda, anche se la diversa disponibilita di solfato può ovviamente condizionare la precipitazione di anidrite.

Anche il campo geotermico di Larderello ha sofferto di una forte riduzione di permeabilita per deposizione di sali, per la maggior parte costituiti da anidrite; in questo caso si tratta pero di un fenomeno indotto dallo sfruttamento intensivo che ha provocato l'abbassamento della superficie di vaporizzazione (Marinelli, 1978) o la concentrazione delle soluzioni acquose presenti nelle microfratture.

Geotermica Italiana 97

ENEA
"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
La deposizione di anidrite o calcite può determinare, in un tempo relativamente breve (se riferito alla vitá media di un sistema idrotermale), il totale sigillamento delle fratture lungo le quali circolano le soluzioni idrotermali, con conseguente arresto del flusso naturale di CO_{2}. Quest'ultimo può essere ristabilito:
(1) da movimenti tettonici che determinano la riattivazione di vecchie fratture e/o l'apertura di nuove fratture, analogamente a quanto proposto da Marinelli (1978)
(2) da fratturazione idropneumatica, dove si stabiliscono pressioni di fluidi elevate.
In assenza di questi fenomeni di fratturazione, la deposizione di anidrite o calcite può provocare quindi la "morte" del serbatoio geotermico.

Dalla discussione precedente si evince che lo studio del flusso naturale di CO_{2} può avere notevole importanza pratica per la localizzazione di sistemi geotermici nella regione tosco-laziale; infatti:

- laddove in superficie è presente un alto flusso di CO_{2}, in profondita puo essere presente un sistema geotermico attivo;
- laddove in superficie è presente un flusso di CO_{2} molto basso, in profondità non può essere presente un serbatoio geotermico attivo; se c'era è ormai stato sigillato.

Per confermare queste deduzioni sarebbe necessario disporre, a rigore, di dati di flusso di CO_{2} dal suolo che al momento non sono disponibili per la regione toscolaziale. In mancanza di tali dati è ragionevole esaminare la distribuzione della $P_{C O 2}$ nelle acque di circolazione poco profonda (sorgenti, pozzi, ecc.) anche se la P_{co} in queste acque:

- non è funzione solamente del flusso di CO_{2}, ma anche delle caratteristiche dell'acquifero, principalmente dello spessore e del flusso idrico (a questo proposito vedasi anche il modello di distribuzione dell'acido borico di Tonani, 1970);
- non può superare la soglia di circa 1 bar.

Nonostante questi limiti, la distribuzione della PCO2 è stata studiata in un campione statistico costituito da 1824 analisi di sorgenti e pozzi disponibili in bibliografia (rapporti ENEL e AGIP-ENEL non pubblicati; dati inediti del Dipartimento di Scienze della Terra di Perugia; Bini et al., 1976; Chiodini et al., 1988; Chiodini et al., $1982 \mathrm{a}, \mathrm{b}$; D'Amore et al., 1979). L'area indagata si estende a nord fino al Monte Amiata e ad ENE fino ai rilievi dell'Appennino umbro-marchigiano ed abbraccia la maggior parte degli affioramenti del vulcanismo laziale (Monti Vulsini, Monti Cimini, Monti Sabatini, Colli Albani).

Il valore medio del logaritmo della PCO2 nelle acque di quest'area è -1.588 ($\mathrm{P}_{\mathrm{CO} 2}=0.026$ bar), con uno scarto quadratico medio di 0.667 . L'istogramma del logaritmo della PCO2 si allontana da una distribuzione log-normale per la presenza di una famiglia anomala con moda lievemente inferiore a $P_{C O 2}=1$ bar (Fig. 5). Per quanto visto sul $\delta^{13^{3}} \mathrm{C}$

ENEA
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

della CO_{2}, tale famiglia anomala riflette l'apporto di CO_{2} profonda.

Il diagramma di Langelier-Ludwig di Fig. 6 mostra che le acque caratterizzate da alti valori di $\mathrm{P}_{\mathrm{CO} 2}$ (>0.1 bar) presentano le stesse composizioni, da bicarbonato alcalino terrosa a bicarbonato alcalina, tipiche delle acque di bassa $P_{C O 2}(<0.1$ bar) che circolano negli acquiferi vulcanici e sedimentari della regione. Un buon numero di acque ad alta $\mathrm{P}_{\mathrm{CO} 2}$ mostrano un arricchimento nella componente solfatica ed alcune hanno carattere solfato acido; come gia ricordato, queste deviazioni sono generalmente spiegate dal processo di ossidazione ad acido solforico dell' $\mathrm{H}_{2} \mathrm{~S}$ presente nei gas idrotermali che entrano, come tali, negli acquiferi poco profondi (Henley e Ellis, 1983). Solamente nel caso di alcune sorgenti termali di composizione solfato calcica e cloruro sodica, la CO_{2} risale in superficie come specie disciolta in acque di provenienza profonda. Pertanto si può concludere che il processo principale di arricchimento in CO_{2} delle acque di circolazione poco profonda è l'apporto di una fase gassosa di provenienza profonda, ricca appunto di CO_{2}.

A scala regionale si osserva che i valori di $P_{C O 2}$ delle acque di circolazione poco profonda diminuiscono spostandosi dall'asse del vulcanismo tosco-laziale verso le zone orientali più fredde a ridosso degli Appennini (Fig. 7); in particolare, ad est della linea ideale passante per Arezzo e Rieti, grosso modo coincidente con il bordo crientale dell'Etruscan swell di Marinelli (1975), si individuano pochissimi campioni con alta PCO2. Esaminando in dettaglio la distribuzione geografica della $P_{C O 2}$, si osserva che i sistemi geotermici conosciuti di Monte Amiata (Bagnore e Piancastagnaio), Torre Alfina, Latera e quello a bassa entalpia di Viterbo generano alte P_{CO} 恠 nelle acque di circolazione poco profonda sovrastanti. Cio conferma le deduzioni presentate poco sopra. Da notare infine che, anche in assenza di conoscenze dirette sul sottosuolo delle altre zone caratterizzate da alte $P_{C O 2}, ~ l a ~ d i s t r i b u z i o n e ~ d e i ~$ valori anomali sembra indicare un controllo tettonicostrutturale non casuale.

Ringraziamenti. Gli autori desiderano ringraziare Giorgio Marinelli per la lettura critica del manoscritto e per gli apprezzati consigli che hanno portato ad un miglioramento della prima stesura. Si ringrazia inoltre l'ENEL-VDAG per averci gentilmente concesso l'utilizzo di dati non pubblicati.

Bibliografia

Arnorsson S., Sigurdsson S. e Svavarsson H. (1982). The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0° to $300{ }^{\circ} \mathrm{C}$. Geochim. Cosmochim. Acta, 46, 1513-1532.

Geotermica Itallana 99

\section*{ENEA}
 "VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

Arnorsson S., Gunnlaugsson E. e Svavarsson H. (1983). The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochim. Cosmochim. Acta, 47, 567-577.

Baldi P., Bertini G. e Ceccarelli A. (1992). Geothermal fields of Central Italy. Presentato all'IGC di Kyoto, Settembre 92 (in stampa)

Barberi F., Innocenti F. e Ricci C.A. (1971). Il magmatismo nell'Appennino Centro-Settentrionale. Rend. Soc. It. Mineral. Petrol, 27 (Sp. Iss.), 169-213.

Bertini G., Gianelli G., Pandeli E. e Puxeddu M. (1985). Distribution of hydrothermal minerals in Larderello-Travale and Mt.Amiata geothermal fields. Geoth. Res. Council Transactions, 9, 261-266.

Bertrami R., Cioni R., Corazza E., D'Amore F. e Marini I. (1985). Carbon monoxide in geothermal gases. Reservoir temperature calculations at Larderello (Italy). Geoth. Res. Council Transactions, 9, 299-303.

Bini C., Morlunghi F., Giaquinto S. e Lupi S. (1976). Studio idrogeochimico delle acque naturali dell'Umbria: bacini del settore centro-meridionale. Boll. Soc. Geol. It., 95, 14891508.

Bird K.D., Schiffman P., Elders W.A. e Williams A.E. (1984). Calc-silicate mineralization in active geothermal systems. Econ. Geol., 79, 671-695.

Bottinga Y. (1969). Carbon isotope fractionation between graphite, diamond and carbon dioxide. Earth Planet. Sci. Letters, 5, 301-307.

Buonasorte G., Cataldi R., Ceccarelli A., Costantini A., D'Offizi S., Lazzarotto A., Ridolfi A., Baldi P., Barelli A., Bertini G., Bertrami R., Calamai A., Cameli G., Corsi R., Dacquino C., Fiordelisi A., Ghezzo A. e Lovari F. (1988). Ricerca ed esplorazione nell'area geotermica di Torre Alfina (Lazio-Umbria). Boll. Soc. Geol. It., 107, 265337.

Cavarretta G., Gianelli G. e Puxeddu M. (1980). Hydrothermal metamorphism in the Larderello geothermal field. Geothermics, 9, 297-314.

Cavarretta G., Gianelli G. e Puxeddu M. (1982). Formation of authigenic minerals and their use as indicators of the physicochemical parameters of the fluid in the LarderelloTravale geothermal field. Economic Geology, 77, 1071-1084.

Cavarretta G., Gianelli G. Scandiffio G. e Tecce F. (1985). Evolution of the Latera geothermal system II: metamorphic,

Geotermica Itallana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

hydrothermal mineral assemblages and fluid chemistry. J. Volcanol. Geotherm. Res., 26, 337-364.

Cavarretta G. e Lombardi G. (1990). Origin of sulphur in the Quaternary perpotassic melts of Italy: evidence from hauyne sulphur isotope data. Chemical Geology, 82, 15-20.

Cavarretta G. e Tecce F. (1987). Contact metasomatic and hydrothermal minerals in the SH2 deep well, Sabatini volcanic district, Latium, Italy. Geothermics, 16, 127-145.

Chiodini G., Giaquinto S. e Zanzari A.R. (1982 a). Relazione tra il chimismo delle sorgenti umbre e le caratteristiche litologiche degli acquiferi. CNR-PFE, SPEG 3.

Chiodini G., Giaquinto S. e Zanzari A.R. (1982 b). Caratteri idrochimici ed analisi della distribuzione degli indicatori di fuga nelle acque del bacino del fiume Paglia. CNR-PFE, RF 16, 91-112.

Chiodini G., Comodi P., Giaquinto S., Mattioli B. e Zanzari A.R. (1988). Cold groundwater temperatures and conductive heat flow in the Mt Amiata geothermal area, Tuscany, Italy. Geothermics, 17, 645-656.

Chiodini G., Cioni R., Guidi M., Marini L. (1991). Chemical geothermometry and geobarometry in hydrothermal aqueous solutions: A theoretical investigation based on a mineralsolution equilibrium model. Geochim. Cosmochim. Acta, 55, 2709-2727.

Cortecci G., Bertrami R., Ceccarelli A. (1981a). Circulation patterns and geothermometry of some Italian spring systems by sulphate isotopes. In "Proc. 3rd Water-Rock Int. Symp.", Edmonton, Canada, 115-115.

Cortecci G., Lombardi G., Reyes E., e Turi B. (1981b). A sulfur isotopic study of alunite from Latium and Tuscany, Central Italy. Mineralium Deposita, 16, 147-156.

Cortecci G., Reyes E., Berti G. e Casati P. (1981c). Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chemical Geology, 34, 65-79.

D'Amore F'., Panichi C., Squarci P., Bertrami R. e Ceccarelli A. (1979). Studio idrogeologico e idrogeochimico dei sistemi termali della zona Latera-Canino. CNR-PFE, SI 1, 470-482.

Deines P. (1980). The carbon isotopic composition of diamonds: relationship to diamonf shape, color, occurrence and vapor composition. Geochim. Cosmochim. Acta, 44, 943962 .

Deines P. e Gold D.P. (1973). The isotopic composition of carbonatite and kimberlite carbonates and their bearing on
the isotopic composition of deep-seated carbon. Geochim. Cosmochim. Acta, 37, 1709-1733.

Deines P., Langmuir D. e Harmon R.S. (1974). Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim. Cosmochim. Acta, 38, 1147-1164.

Faure G. (1986). Principles of isotope geology. 2nd edition. J. Wiley \& sons. 589 p.

Funiciello R., Mariotti G., Parotto M., Preite-Martinez M., Tecce F., Toneatti R. e Turi B. (1979). Geology, mineralogy and stable isotope geochemistry of the cesano geothermal field (Sabatini Mts. volcanic system, Northern Latium, Italy). Geothermics, 8, 55-73.

Gianelli G. (1985). On the origin of geothermal CO_{2} by metamorphic processes. Boll. Soc. Geol. It., 104, 575-584.

Gianelli G. e Scandiffio G. (1989). The Latera geothermal system (Italy): chemical composition of the geothermal fluid and hypotheses on its origin. Geothermics, 18, 447-463.

Gianelli G., Puxeddu M., Batini F., Bertini G., Dini I., Pandeli E. e Nicolich R. (1988). Geological model of a young volcano-plutonic system: the geothermal region of Monte Amiata (Tuscany, Italy). Geothermics, 17, 719-734.

Henley R.W. e Ellis A.J. (1983). Geothermal systems ancient and modern, a geochemical review. Earth Sciences Reviews, 19, 1-50.

Holland H.D. e Malinin S.D. (1979). The solubility and occurrence of non-ore minerals. In: "Geochemistry of hydrothermal ore deposits", 2nd ed., H.L. Barnes Ed., J. Wiley, 461-508.

Kyser T.K. (1986). Stable isotope variations in the mantle. In: "Stable isotopes in high temperature geological processes", J.W. Valley, H.P. Taylor Jr., J.R. O'Neil, Eds. Reviews in Mineralogy, 16, 141-164.

Mahon W.A.J., McDowell G.D. e Finlayson J.B. (1980). Carbon dioxide: its role in geothermal systems. New Zealand Jour. Sci., 23, 133-148.

Marinelli G. (1969). Some geological data on the geothermal areas of Tuscany. Bull. Volcanol.r 33, 319-333.

Marinelli G. (1975). Magma evolution in Italy. In "Geology of Italy", (C.H. Squyres Ed.) The Earth Sciences Society of the Libyan Arab Republic, 165-219.

Marinelli G. (1978). Le problème de la perméabilité des roches d'origine volcanique dans la recherche d'un champ

Geotermica Itallana

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"

géothermique. Implications de l'Hydrogéologie dans les autres Sciences de la Terre (I.H.E.S. Symposium), Montpellier (France), 11-16 Septembre 1978. Mémoire hors série CERGH-USTL Montpellier, 397-404.

Michard G., Fouillac C., Grimaud D. e Denis J. (1981). Une méthode globale d'estimation des températures des resérvoirs alimentant les sources thermales. Exemple du Massif Central Français. Geochim. Cosmochim. Acta, 45, 1199-1207.

Ohmoto H. e Rye R.O. (1979). Isotopes of sulfur and carbon. In: "Geochemistry of hydrothermal ore deposits", 2nd ed., H.L. Barnes Ed., J. Wiley, 509-567.

Paiotti A. (1993). Il vulcano Vulture (Basilicata). Petrogenesi e geochimica isotopica. Tesi di Laurea. Universita di Pisa.

Pandeli E., Bertini G., Castellucci P. (1991). The tectonic wedges complex of the Larderello area (Southern Tuscany Italy). Boll. Soc. Geol. It., 110, 621-629.

Panichi C. e Tongiorgi E. (1975). Carbon isotopic composition of CO_{2} from springs, fumaroles, mofettes, and travertines of Central and Southern Italy: a preliminary prospection method of geothermal area. 2nd UN Symposium on the Development and Use of Geothermal Resources, San Francisco, Proceedings, 815-825.

Raab M. e Spiro B. (1991). Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chemical Geology, 86, 323-333.

Schneider A. (1970). The sulfur isotope composition of basaltic rocks. Contrib. Mineral. Petrol., 25, 95-124.

Thode H.D. e Monster J. (1965). Sulfur isotope geochemistry of petroleum, evaporites and ancient seas. Am. Assoc. Pet. Geol., Mem., 4, 367-377.

Tomasson J. e Kristmanndottir (1972). High temperature alteration minerals and thermal brines, Reykjanes, Iceland. Contr. Mineral. and Petrol., 36, 123-134.

Tonani F.B. (1970). Geochemical methods of exploration for geothermal energy. Geothermics, 2, 492-515.

Truesdell A.H. e Jones B.F. (1974). WATEQ, a computer program for calculating chemical equilibria of natural waters. Jour. Res. U.S. Geol. Survey, 2, 233-248.

Valley J.W. (1986). Stable isotope geochemistry of metamorphic rocks. In: "Stable isotopes in high temperature geological processes", J.W. Valley, H.P. Taylor Jr., J.R. O'Neil, Eds. Reviews in Mineralogy, 16, 445-489.

ENEA

"VALUTAZIONE DEL POTENZIALE GEOTERMICO NAZIONALE"
Wolery T.J. (1979). Calculation of chemical equilibrium between aqueous solutions and minerals: the EQ3/6 software package. Lawrence Livermore Laboratory, Report UCRL-52658.

Wolery T.J. (1983). EQ3NR. A computer program for geochemical aqueous speciation-solubility calculations: user's guide and documentation. Lawrence Livermore Laboratory, Report UCRI-53414.
Fig. 1

Fig. 2

Fig. 4

Fig. 5

Fig. 6

Fig. 7
\square

[^0]: Tab. 3.2.b. Risultati della applicazione del metodo del volume revisionato ai serbatoi potenziali della Toscana centro-meridionale con $100<T_{m}<200^{\circ} \mathrm{C}$, utilizzando i dati di Cataldi et al. (1978). I simboli identificano le seguenti variabili: - A: estensione areale del serbatoio geotermico;

 - h: spessore medio del serbatoio geotermico;

 ## - V: volume totale (roccia+fluido) del serbatoio geotermico;

 ## - Q: portata oraria di fluido totale estraibile;

 - T-: temperatura minima del serbatoio geotermico;

 ## - T+: temperatura massima del serbatoio geotermico;

 - W-: potenza termica minima estraibile dal serbatoio geotermico;
 - W+: potenza termica massima estraibile dal serbatoio geotermico; - d: profondità media del tetto del serbatoio geotermico;
 - T_{m} : temperatura media del serbatoio geotermico.

 L'attendibilità di questi risultati è commentata nel testo.

[^1]: Tab. 3.3.c. Risultati della applicazione del metodo del volume revisionato ai serbatoi geotermici, con $30<T_{\mathrm{m}}<100^{\circ} \mathrm{C}$, localizzati nel Lazio. I simboli identificano le seguenti variabili:

 A: estensione areale del serbatoio geotermico;
 h: spessore medio del serbatoio geotermico;

 - V: volume totale (roccia+fluido) del serbatoio geotermico;
 - Q: portata oraria di fluido totale estraibile;
 - T-: temperatura minima del serbatoio geotermico;
 - T_{+}: temperatura massima del serbatoio geotermico;
 - W-: potenza termica minima estraibile dal serbatoio geotermico;
 W_{+}: potenza termica massima estraibile dal serbatoio geotermico;
 d: profondità media del tetto del serbatoio geotermico;
 T_{m} : temperatura media del serbatoio geotermico.

[^2]: Tab. 3.4.b. Risultati della applicazione del metodo del volume revisionato ai serbatoi geotermici, con $30<T_{m}<100^{\circ} \mathrm{C}$, localizzati in Campania. I simboli identificano le seguenti variabili:

 - A: estensione areale del serbatoio geotermico;
 - h: spessore medio del serbatoio geotermico;
 - V: volume totale (roccia+fluido) del serbatoio geotermico;
 - Q: portata oraria di fluido totale estraibile;
 - T-: temperatura minima del serbatoio geotermico;
 - T+: temperatura massima del serbatoio geotermico;
 - W-: potenza termica minima estraibile dal serbatoio geotermico; - W+: potenza termica massima estraibile dal serbatoio geotermico;
 - d: profondità media del tetto del serbatoio geotermico;
 - T_{m} : temperatura media del serbatoio geotermico.

[^3]: Tab. 5.1. Parametri di input per il modello di raffreddamento conduttivo di camere
 magmatiche. Spiegazione delle sigle:
 $L=$ lunghezza dello spigolo della camera magmatica,
 $H_{1}=$ profondità del tetto della camera magmatica;
 $\mathrm{H}_{2}=$ profondità del letto della camera magmatica;
 $T_{\text {mgm }}=$ temperatura iniziale del magma;
 $F_{t}=$ flusso geotermico medio iniziale delia zona;
 $t=$ tempo di raffreddamento.

[^4]: $-5000-5750-5500-5250-5000-4750-4501-4250-4000-3750-3500-3250-3000-2750-2500-2250-2000-1750-1500-1250-1000-750-500-250+0$

[^5]: Tab. 6.1.a. Riserve geotermiche di categoria A identificate in Italia. I simboli si riferiscono
 alle seguenti variabili:

 - T-: temperatura minima del serbatoio geotermico;
 - T+: temperatura massima del serbatoio geotermico;
 - W-: potenza termica minima estratta o estraibile dal serbatoio geotermico;

 W+: potenza termica massima estratta o estraibile dal serbatoio geotermico;
 d: profondità media del tetto del serbatoio geotermico;
 T_{m} : temperatura media del serbatoio geotermico.

