

DIPARTIMENTO PER L'ENERGIA
DIREZIONE GENERALE PER LE RISORSE MINERARIE ED ENERGETICHE
Divisione V – Laboratori di analisi e di sperimentazione per il settore minerario ed energetico

RELAZIONE SPERIMENTALE

CAMPIONE 3087

Analisi del gas naturale nella centrale di trattamento gas "Larino" della società EDISON S.p.A., ubicata nel comune di Larino (CB).

Via Antonio Bosio, 15 – 00161 Roma tel. +39 06 4880167 – fax +39 06 4824723 marcello.dellorso@mise.gov.it www.unmig.mise.gov.it

Premessa

La Direzione Generale per le Risorse Minerarie ed Energetiche del Ministero dello Sviluppo Economico, Dipartimento per l'Energia, ha predisposto una campagna di controllo della qualità del gas naturale prodotto e/o stoccato in Italia.

Nell'ambito di questi controlli, l'ing. Marcello Dell'Orso e il dott. Renzo Montereali, funzionari tecnici della Divisione V - Laboratori di analisi e sperimentazione per il settore minerario ed energetico, coadiuvati dalla dr.ssa Andree Soledad Bonetti, hanno effettuato in data 4 giugno 2013 il campionamento e l'analisi in campo del gas naturale prodotto nella centrale "Larino" dopo il trattamento e prima della immissione nella rete gas gestita dalla SGI (Società Gasdotti Italia).

Nella centrale "Larino" della società Edison S.p.A., il gas prodotto, circa 48.000 Sm³/giorno, proviene da 19 pozzi a terra - concessione Colle di Lauro della Edison, e dal pozzo "Sinarca 003" - concessione Mafalda della società Gas Plus Italiana.

Alle operazioni di campionamento ed analisi hanno assistito in rappresentanza della società l'ing. Marco Santucci (coordinatore produzione gas) e il sig. Valter Bisbocci (capo centrale).

Modalità di campionamento

Il campionamento (foto 1) è stato effettuato, dopo la disidratazione ottenuta per assorbimento con *glicol trietilenico*, dalla linea di alimentazione motori dei compressori.

L'analisi composizionale del gas è stata condotta dai tecnici della Divisione V con l'ausilio di un gascromatografo portatile modello µGC 3000 della Agilent (foto 2).

Foto 1 – Punto di campionamento (freccia di colore rosso)

Foto 2 - gascromatografo portatile modello $\mu GC\ 3000\ della\ Agilent$

Sono state effettuate due serie di misure dalle ore 16:10 alle ore 16:50; la media dei risultati ottenuti, espressi in percento in moli in condizioni standard (T=15 °C, P=101,325 kPa) sono riportati nella tabella 1; per confronto, nella stessa tabella, sono riportati anche i valori rilevati ogni tre mesi dalla Innovhub Stazioni Sperimentali per l'industria – Div. Stazione Sperimentale per i Combustibili (Rapporto di prova n. 201301413 del 18/03/2013).

	u.m.	Composizione Gas media accertamenti in campo	Composizione Gas INNOVHUB
metano	% moli	99,34	99,44
etano	% moli	0,06	0,05
propano	% moli	0,03	0,02
iso-butano	% moli	0,01	0,01
n-butano	% moli	< 0,01	< 0,01
iso-pentano	% moli	< 0,01	< 0,01
n-pentano	% moli	< 0,01	< 0,01
esano	% moli	< 0,01	< 0,01
anidride carbonica	% moli	0,19	0,19
azoto	% moli	0,37	0,28

Tabella 1 - Composizione del gas naturale espresso in percento molare

In tabella 2 sono riportati il *potere calorifico superiore*, l'*indice di Wobbe* e la *densità relativa* calcolati dalla composizione molare del gas.

	u.m.	media accertamenti in campo	INNOVHUB
Potere calorifico superiore	MJ/Sm ³	37,615	37,634
Indice di Wobbe	MJ/Sm ³	50,315	50,360
Densità relativa		0,5589	0,5584

Tabella 2 - Proprietà fisiche del gas naturale

Conclusioni

I risultati delle analisi evidenziano che i parametri calcolati in base alla composizione molare del gas, rientrano tra i valori di accettabilità della qualità del gas stabiliti dal D.M. 19 febbraio 2007, riportati in nota a piè di pagina.

Rus Mostonal

Roma, 7	giugno	2013
---------	--------	------

Il Funzionario Tecnico:

dott. Renzo Montereali

Il responsabile della Divisione V ing. Marcello Dell'Orso

Nota

Decreto del Ministero dello Sviluppo Economico 19 febbraio 2007: "Approvazione della regola tecnica sulle caratteristiche chimico-fisiche e sulla presenza di altri componenti nel gas combustibile da convogliare" (G.U. N. 65 del 19 Marzo 2007). Allegato A, punto 5 "Parametri di qualità", punto 5.3 "Proprietà fisiche"

Proprietà	Valori di accettabilità	Unità di misura
Potere calorifico superiore	34,95 – 45,28	(MJ/Sm^3)
Indice di Wobbe	47,31 – 52,33	(MJ/Sm ³)
Densità relativa	0,5548 - 0,8	