

Divisione V - Laboratori chimici e mineralogici

RELAZIONE SPERIMENTALE

CAMPIONI 3218

Attività ispettiva sulla piattaforma di produzione Antares della società eni S.p.A.

Via Antonio Bosio, 15 - 00161 Roma tel. +39 06 4880167 - fax +39 06 4824723 marcello.dellorso@mise.gov.it www.unmig.mise.gov.it

Premessa

Nell'ambito della collaborazione in atto con le Capitanerie di Porto e su incarico del Direttore Generale della DGS-UNMIG, in data 22 luglio 2016 è stata effettuata una visita ispettiva sulla piattaforma di produzione "Antares" della società eni S.p.A., ubicata nell'offshore adriatico, al largo della costa romagnola.

La piattaforma è stata raggiunta con l'ausilio di una motovedetta classe 300 (CP 328) in forza alla Capitaneria di Porto di Marina di Ravenna (foto 1).

Il coordinatore della Divisione V, ing. Marcello Dell'Orso, coadiuvato dalle dr.sse Andree Soledad Bonetti e Ilaria Di Pilato, ha effettuato il campionamento dell'acqua di strato separata dagli idrocarburi gassosi a monte e a valle dell'impianto di trattamento con filtri a carbone attivo e alla base del casing morto (10 metri sotto il livello del mare) utilizzato per lo scarico a mare dell'acqua di strato trattata, con l'ausilio del 1° Nucleo Operatori Subacquei-Guardia Costiera di S. Benedetto del Tronto. Con apparecchiature in dotazione alla Divisione V, è stato inoltre effettuato il campionamento e l'analisi in campo del gas naturale prodotto sulla piattaforma "Antares".

Il gas naturale prodotto sulla piattaforma "Antares", dopo il trattamento di disidratazione meccanica, viene inviato, tramite sealine da 16", alla centrale di "Ravenna Mare", dove viene ulteriormente disidratato, tramite trattamento con glicol trietilenico, prima dell'immissione nella rete SNAM.

Alle operazioni di campionamento ha assistito in rappresentanza della società il Sig. Riccardo Saraga - supervisore di campo.

Foto 1 - Motovedetta CP 328

Risultati

1- Analisi del gas naturale

L'analisi composizionale del gas è stata condotta dai tecnici della Divisione V con l'ausilio di un gascromatografo portatile modello µGC 3000 della società Agilent.

Sono state effettuate e misure dalle ore 12:35 alle ore 12:55 prelevando il gas dalla linea di misura; la media dei risultati ottenuti, espressi in percento in moli in condizioni standard (T=15 °C, P=101,325 kPa) sono riportati in tabella 2.

	u. m.	Valore medio composizione gas
metano	% moli	99,41
etano	% moli	0,06
propano	% moli	0,04
iso-butano	% moli	0,01
n-butano	% moli	< 0,01
iso-pentano	% moli	< 0,01
n-pentano	% moli	< 0,01
esano	% moli	< 0,01
anidride carbonica	% moli	0,07
azoto	% moli	0,41

Tabella 2 - Composizione del gas naturale espressa in percento molare

In tabella 3 sono riportati il potere calorifico superiore, l'indice di Wobbe e la densità relativa calcolati dalla composizione molare del gas.

Proprietà fisiche	u.m.	Valore medio proprietà fisiche	Decreto del Ministero dello Sviluppo Economico 19 febbraio 2007: "Approvazione della regola tecnica sulle caratteristiche chimico-fisiche e sulla presenza di altri componenti nel gas combustibile da convogliare" (G.U. N. 65 del 19 Marzo 2007). Allegato A, punto 5 "Parametri di qualità", punto 5.3 "Proprietà fisiche" Valori di Accettabilità	
Potere calorifico superiore	MJ/Sm ³	37,66	34,95 – 45,28	
Indice di Wobbe	MJ/Sm ³	50,40	47,31 – 52,33	
Densità relativa		0,5580	0,5548 - 0,8	

Tabella 3 - Proprietà fisiche del gas naturale

2- Modalità di campionamento ed analisi dei reflui liquidi (acqua di strato)

Sono stati prelevati 3 campioni: in ingresso e in uscita (foto 2 e 3), dell'impianto di trattamento con filtri a carbone attivo (foto 4) delle acque di strato e un campione all'uscita del casing morto (foto 5). Le acque di strato, derivanti dal trattamento del gas naturale (produzione gas del 22 luglio 2016 pari a 706 Sm³, dato della società) prodotte su "Antares", vengono scaricate a mare dopo il trattamento con filtri a carbone attivo (0,033 m³ scaricati il giorno 22 luglio 2016, dato della società), secondo quanto autorizzato dal Decreto del Ministro dell'ambiente e della tutela del territorio e del mare-Direzione per la Protezione della Natura, DEC/DPN prot. n. 628 del 13/04/2007; volume max. giornaliero autorizzato pari a 25 m³

Foto 2 - Campionamento a monte filtri

Foto 3 - Campionamento a valle filtri

Foto 4 - Filtri a carbone attivo

Foto 5 - campionamento alla base del casing morto

Sui campioni prelevati sono state eseguite le seguenti indagini analitiche:

- 1) misura del valore di pH, conducibilità e temperatura;
- 2) determinazione dei solidi sospesi totali;
- 3) determinazione della concentrazione degli anioni e dei cationi;
- 4) determinazione della concentrazione dei metalli;
- 5) determinazione del contenuto di idrocarburi totali.

1) Misura del valore di pH, conducibilità e temperatura

Il pH e la conducibilità delle acque provenienti dai tre punti di campionamento, sono stati misurati rispettivamente mediante pHmetro mod. HI 8424 e conduttimetro mod. HI 933100 della HANNA Instruments; la temperatura è stata misurata mediante sonda termometrica. I valori ottenuti sono riportati in tabella 1.

Parametro	Acqua di strato a monte filtri a carbone attivo	Acqua di strato a valle filtri a carbone attivo	Acqua di strato all'uscita del casing morto
pН	7,69	7,97	8,21
Conducibilità (ms)	57,2	57,4	59,1
Temperatura (°C)	29	29	25

Tabella 1 - Valori di pH, conducibilità e temperatura

2) Determinazione dei solidi sospesi totali nei campioni di acqua di strato.

Il quantitativo dei solidi sospesi totali è stato determinato per via gravimetrica sul residuo della filtrazione a 0,45 micron dell'acqua di strato, essiccato fino a peso costante. I risultati ottenuti espressi in milligrammi per litro di acqua di strato (mg/l), sono riportati in tabella 2.

Parametro	Acqua di strato a monte filtri a carbone attivo	Acqua di strato a valle filtri a carbone attivo	Acqua di strato all'uscita del casing morto
Solidi sospesi totali (mg/l)	13	6	2

Tabella 2 - Solidi sospesi totali

3) Determinazione della concentrazione di anioni e cationi nei tre campioni.

Sui campioni filtrati (mediante filtro da 0,45 micron) sono state determinate le concentrazioni degli anioni e dei cationi con l'ausilio del Cromatografo Ionico della Dionex modello ICS 1000 e ICS 5000. I risultati ottenuti sono riportati in tabella 3.

Parametro	u. m.	Acqua di strato a monte filtri a carbone attivo	Aacqua di strato a valle filtri a carbone attivo	Acqua di strato all'uscita del casing morto	Limite di rivelabilità L.R.
Fluoruri (F ⁻)	mg/l	< L.R.	< L.R.	< L.R.	1,0
Cloruri (Cl ⁻)	mg/l	20.967	20.582	21.105	0,5
Nitrati (NO ₃ -)	mg/l	< L.R.	< L.R.	< L.R.	1,0
Fosfati (PO43-)	mg/l	< L.R.	< L.R.	< L.R.	5,0
Solfati (SO ₄ ²⁻)	mg/l	2.845	2.740	2.855	1,0
Sodio (Na+)	mg/l	11.720	10.885	11.443	1,0
Potassio (K+)	mg/l	442	439	451	0,5
Magnesio (Mg ²⁺)	mg/l	1.448	1.338	1.510	0,2
Calcio (Ca ²⁺)	mg/l	450	443	462	0,5
Ammonio (NH ₄ ⁺)	mg/l	< L.R.	< L.R.	< L.R.	2,0

Tabella 3 - Valori delle concentrazioni degli anioni e dei cationi

4) Determinazione della concentrazione dei metalli nei tre campioni liquidi

Le determinazioni analitiche del tenore in metalli disciolti nei campioni liquidi filtrati (mediante filtro da 0,45 micron) sono state effettuate, per l'arsenico e il mercurio, mediante Spettroscopia di Assorbimento Atomico (Spettrofotometro AAnalyst 700 e sistema idruri MHS10 della società Perkin Elmer), mentre per i restanti sono state effettuate mediante spettroscopia di emissione con sorgente al plasma (Spettrometro ICP-OES Optima 8000 della società Perkin Elmer). I risultati ottenuti sono riportati in tabella 4.

Metallo	u. m.	Acqua di strato a monte filtri a carbone attivo	Acqua di strato a valle filtri a carbone attivo	Acqua di strato all'uscita del casing morto	Limite di rivelabilità L.R.
Manganese Mn)	mg/l	0,0198	0,0346	0,0014	0,0001
Ferro (Fe)	mg/l	0,0644	0,0444	0,0474	0,0007
Berillio (Be)	mg/l	0,0068	0,0068	< L.R.	0,0001
Arsenico (As)	mg/l	< L.R.	< L.R.	< L.R.	0,0010
Zinco (Zn)	mg/l	0,1416	0,7150	0,0238	0,0001
Piombo (Pb)	mg/l	0,0018	< L.R.	< L.R.	0,0011
Cromo totale (Cr)	mg/l	< L.R.	< L.R.	< L.R.	0,0004
Nichel (Ni)	mg/l	< L.R.	< L.R.	< L.R.	0,0005
Rame (Cu)	mg/l	< L.R.	< L.R.	< L.R.	0,0002
Cadmio (Cd)	mg/l	< L.R.	< L.R.	< L.R.	0,0001
Mercurio (Hg)	mg/l	< L.R.	< L.R.	< L.R.	0,0010
Cobalto (Co)	mg/l	< L.R.	< L.R.	< L.R.	0,0001
Vanadio (V)	mg/l	< L.R.	< L.R.	< L.R.	0,0004
Alluminio (Al)	mg/l	0,0168	0,0326	0,1822	0,0007
Bario (Ba)	mg/l	0,0462	0,0494	0,0412	0,0009
Boro (B)	mg/l	5,4204	5,4122	5,5724	0,0021
Selenio (Se)	mg/l	0,0016	0,0024	0,0032	0,0008
Stagno (Sn)	mg/l	< L.R.	< L.R.	< L.R.	0,0056

Tabella 4 - Valori delle concentrazioni dei metalli

5) Determinazione del contenuto di idrocarburi nell'acqua di strato scaricata a mare

Il contenuto di idrocarburi totali è stato determinato mediante estrazione con solvente e gas cromatografia con rivelatore a ionizzazione di fiamma (UNI EN ISO 9377-2:2002) utilizzando un gas cromatografo 7890B della ditta Agilent. I risultati ottenuti, espressi in milligrammi per litro di acqua di strato (mg/l), sono riportati in tabella 5.

Parametro	Acqua di strato a monte filtri a carbone attivo	Acqua di strato a valle filtri a carbone attivo	Acqua di strato all'uscita del casing morto	Limite di rivelabilità L.R.	Valore limite D.Lgs. 152/06 art. 104, comma 5
Idrocarburi totali (C10-C40) mg/l	0,12	0,09	0,08	0,05	40

Tabella 5 – Idrocarburi totali

Nell'allegato 1 sono riportate le metodologie utilizzate per le determinazioni analitiche effettuate sui reflui acquosi.

Conclusioni

Dai risultati delle analisi si ricava che:

- il contenuto di idrocarburi nell'acqua di strato campionata a valle dei filtri a carbone attivo e scaricata a mare, risulta inferiore al valore limite previsto dall'art. 104, comma 5 del D.Lgs. 152/06 e s.m.i.;
- · i parametri calcolati in base alla composizione molare del gas, rientrano tra i valori di accettabilità della qualità del gas stabiliti dal D.M. 19 febbraio 2007;
- i dati analitici rilevati per l'acqua di strato a monte e a valle dei filtri a carbone attivo, utilizzati per l'abbattimento degli idrocarburi residui, indicano che la filtrazione non incide sui valori di concentrazione dei metalli e degli altri elementi analizzati, risultando i valori tra loro comparabili; le analisi dei metalli e degli altri elementi sono state effettuate esclusivamente a fini conoscitivi

Roma, 27 settembre 2016

I Funzionari Tecnici:

dr. Renzo Montereali Muzo Montuali dr. ssa Maria Colein Mono Briu

dr. Carlo Celletti

Il coordinatore della Divisione V ing. Marcello Dell'Orso

Allegato 1

Alluminio	IRSA 2003 - 3020	
Arsenico	IRSA 2003 – 3080-A	
Bario	IRSA 2003 - 3020	
Berillio	IRSA 2003 - 3020	
Boro	IRSA 2003 - 3020	
Cadmio	IRSA 2003 - 3020	
Calcio	IRSA 2003 - 3030	
Cloruri	IRSA 2003 - 4020	
Cobalto	IRSA 2003 - 3020	
Conducibilità	IRSA 2003 - 2030	
Cromo totale	IRSA 2003 - 3020	
Ferro	IRSA 2003 - 3020	
Floruri	IRSA 2003 - 4020	
Fosfati	IRSA 2003 - 4020	
Idrocarburi totali	UNI EN ISO 9377-2:2002	
Magnesio	IRSA 2003 - 3030	
Manganese	IRSA 2003 - 3020	
Mercurio	IRSA 2003 - 3200- A1	
Nichel	IRSA 2003 - 3020	
Nitrati	IRSA 2003 - 4020	
pН	IRSA 2003 - 2060	
Piombo	IRSA 2003 - 3020	
Potassio	IRSA 2003 - 3030	
Rame	IRSA 2003 - 3020	
Selenio	IRSA 2003 - 3020	
Sodio	IRSA 2003 - 3030	
Solfati	IRSA 2003 - 4020	
Solidi sospesi totali	IRSA 2003 - 2090 B	
Stagno	IRSA 2003 - 3020	
Vanadio	IRSA 2003 - 3020	
Zinco	IRSA 2003 - 3020	

Metodi analitici utilizzati per le determinazioni effettuate sui reflui acquosi